Preprints 2024

Adaptive Sparsity Level during Training for Efficient Time Series Forecasting with Transformers

Zahra Atashgahi, Mykola Pechenizkiy, Raymond Veldhuis, Decebal Constantin Mocanu

RumorMixer: Exploring Echo Chamber Effect and Platform Heterogeneity

Haowei Xu, Chao Gao, Xianghua Li, Zhen Wang

Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation Learning

Amihossein Vahidi, Lisa Wimmer, Hüseyin Anil Gündüz, Bernd Bischl, Eyke Hüllermeier, Mina Rezaei

Modular Debiasing of Latent User Representations in Prototype-based Recommender Systems

Alessandro B. Melchiorre, Shahed Masoudian, Deepak Kumar, Markus Schedl

A Mathematics Framework of Artificial Shifted Population Risk and Its Further Understanding Related to Consistency Regularization

Xiliang Yang, Shenyang Deng, Shicong Liu, Yuanchi Suo, Wing.W.Y NG, Jianjun Zhang

Attention-Driven Dropout: A Simple Method to Improve Self-supervised Contrastive Sentence Embeddings

Fabian Stermann, Ilias Chalkidis, Amihossein Vahidi, Bernd Bischl, Mina Rezaei

AEMLO: AutoEncoder-Guided Multi-Label Oversampling

Ao Zhou, Bin Liu, Jin Wang, Kaiwei Sun, Kelin Liu

MANTRA: Temporal Betweenness Centrality Approximation through Sampling

Antonio Cruciani

Dimensionality-induced information loss of outliers in deep neural networks

Kazuki Uematsu, Kosuke Haruki, Taiji Suzuki, Mitsuhiro Kimura, Takahiro Takimoto, Hideyuki Nakagawa

Towards Open-World Cross-Domain Sequential Recommendation: A Model-Agnostic Contrastive Denoising Approach

Wujiang Xu, Xuying Ning, Wenfang Lin, Mingming Ha, Qiongxu Ma, Qianqiao Liang, Xuewen Tao, Linxun Chen, Bing Han, Minnan Luo

MixerFlow: MLP-Mixer meets Normalising Flows

Eshant English, Matthias Kirchler, Christoph Lippert

Handling Delayed Feedback in Distributed Online Optimization : A Projection-Free Approach

Tuan-Anh Nguyen, Nguyen Kim Thang, Denis Trystram

Secure Dataset Condensation for Privacy-Preserving and Efficient Vertical Federated Learning

Dashan Gao, Canhui Wu, Xiaojin Zhang, Xin Yao, Qiang Yang

Neighborhood Component Feature Selection for Multiple Instance Learning Paradigm

Giacomo Turri, Luca Romeo

MESS: Coarse-grained Modular Two-way Dialogue Entity Linking Framework

Pengnian Qi, Zhiyuan Zha, Biao Qin

Session - Target Pair: User Intent Perceiving Networks for Session-based Recommendation

Tingting Dai, Qiao Liu, Yang Xie, Yue Zeng, Rui Hou, Yanglei Gan

Hierarchical Fine-grained Visual Classification Leveraging Consistent Hierarchical Knowledge

Yuting Liu, Liu Yang, Yu Wang

Backdoor Attacks with Input-unique Triggers in NLP

Xukun Zhou, Jiwei Li, Tianwei Zhang, Lingjuan Lyu, Muqiao Yang, Jun He

Label Privacy Source Coding in Vertical Federated Learning

Dashan Gao, Sheng Wan, Hanlin Gu, Lixin Fan, Xin Yao, Qiang Yang

Error types in Transformer-based Paraphrasing Models: A Taxonomy, Paraphrase Annotation Model and Dataset

Auday Berro, Boualem Benatallah, Yacine Gaci, Khalid Benabdeslem

FedHCDR: Federated Cross-Domain Recommendation with Hypergraph Signal Decoupling

Hongyu Zhang, Dongyi Zheng, Lin Zhong, Xu Yang, Jiyuan Feng, Yunqing Feng, Qing Liao

Data-Agnostic Pivotal Instances Selection for Decision-Making Models

Alessio Cascione, Mattia Setzu, Riccardo Guidotti

Reliable Classifications with Guaranteed Confidence using the Dempster-Shafer Theory of Evidence

Marie C. Kempkes, Vedran Dunjko, Evert van Nieuwenburg, Jakob Spiegelberg

A New Framework for Evaluating the Validity and the Performance of Binary Decisions on Manifold-valued Data

Anis Fradi, Chafik Samir

The Future is Different: Predicting Reddits Popularity with Variational Dynamic Language Models

Kostadin Cvejoski, Rams'es J. S'anchez, C'esar Ojeda

CircuitVQA: A Visual Question Answering Dataset for Electrical Circuit Images

Rahul Mehta, Bhavyajeet Singh, Vasudeva Varma, Manish Gupta

Landscape Analysis of Stochastic Policy Gradient Methods

Xingtu Liu

Spatiotemporal Covariance Neural Networks

Andrea Cavallo, Mohammad Sabbaqi, Elvin Isufi

Frequency Enhanced Pre-training for Cross-city Few-shot Traffic Forecasting

Zhanyu Liu, Jianrong Ding, Guanjie Zheng

Simple Graph Condensation

Zhenbang Xiao, Yu Wang, Shunyu Liu, Huiqiong Wang, Mingli Song, Tongya Zheng

Multivariate Traffic Demand Prediction via 2D Spectral Learning and Global Spatial Optimization

Changlu Chen, Yanbin Liu, Ling Chen, Chengqi Zhang

Reliable Classifications with Guaranteed Confidence using the Dempster-Shafer Theory of Evidence

Marie C. Kempkes, Vedran Dunjko, Evert van Nieuwenburg, Jakob Spiegelberg

LimGen: Probing the LLMs for Generating Suggestive Limitations of Research Papers

Abdur Rahman Bin Mohammed Faizullah, Ashok Urlana, Rahul Mishra

On the Robustness of Global Feature Effect Explanations

Hubert Baniecki, Giuseppe Casalicchio, Bernd Bischl, Przemyslaw Biecek

Federated Learning with Flexible Architectures

Jong-Ik Park, Carlee Joe-Wong

A Unified Data Augmentation Framework for Low-Resource Multi-Domain Dialogue Generation

Yongkang Liu, Ercong Nie, Zheng Hua, Zifeng Ding, Daling Wang, Yifei Zhang, Hinrich Schutze

Improving Diversity in Black-box Few-shot Knowledge Distillation

Tri-Nhan Vo, Dang Nguyen, Kien Do, Sunil Gupta

Self-Pro: A Self-Prompt and Tuning Framework for Graph Neural Networks

Chenghua Gong, Xiang Li, Jianxiang Yu, Yao Cheng, Jiaqi Tan, Chengcheng Yu

Variable-Agnostic Causal Exploration for Reinforcement Learning

Minh Hoang Nguyen, Hung Le, Svetha Venkatesh

LayerGLAT: a Flexible Non-Autoregressive Transformer for Single-Pass and Multi-Pass Prediction

Shijie Li, Inigo Jauregi Unanue, Massimo Piccardi

Generative Modeling with Flow-Guided Density Ratio Learning

Alvin Heng, Abdul Fatir Ansari, Harold Soh

ADR: An Adversarial Approach to Learn Decomposed Representations for Causal Inference

Xiangyu Zheng, Guogang Tian, Sen Wang, Zhixiang Huang

Data is Moody: Discovering Data Modification Rules from Process Event Logs

Marco Bjarne Schuster, Boris Wiegand, Jilles Vreeken

Self-certified Tuple-wise Deep Learning

Sijia Zhou, Yunwen Lei, Ata Kab'an

How Much Training Data is Memorized in Overparameterized Autoencoders? An Inverse Problem Perspective on Memorization Evaluation

Koren Abitbul, Yehuda Dar

Continual Neural Computation

Matteo Tiezzi, Simone Marullo, Federico Becattini, Stefano Melacci

PINN-BO: A Black-box Optimization Algorithm using Physics-Informed Neural Networks

Dat Phan-Trong, Hung The Tran, Alistair Shilton, Sunil Gupta

Enhancing Sharpness-Aware Minimization by Learning Perturbation Radius

Xuehao Wang, Weisen Jiang, Shuai Fu, Yu Zhang

SaccadeDet: A Novel Dual-Stage Architecture for Rapid and Accurate Detection in Gigapixel Images

Wenxi Li, Ruxin Zhang, Haozhe Lin, Yuchen Guo, Chao Ma, ', 'Xiaokang Yang

Physics-Informed Spatio-Temporal Model for Human Mobility Prediction

Quanyan Gao, Chao Li, Qinmin Yang

Adaptive Seasonal-Trend Decomposition for Streaming Time Series Data with Transitions and Fluctuations in Seasonality

Thanapol Phungtua-eng, Yoshitaka Yamamoto

A deep cut into Split Federated Self-supervised Learning

Marcin Przewięźlikowski, Marcin Osial, Bartosz Zieliński, Marek Śmieja

Interpretable and Generalizable Spatiotemporal Predictive Learning with Disentangled Consistency

Jingxuan Wei, Cheng Tan, Zhangyang Gao, Linzhuang Sun, Bihui Yu, Ruifeng Guo, Stan Li

Reinventing Node-Centric Traffic Forecasting for Improved Accuracy and Efficiency

Xu Liu, Yuxuan Liang, Chao Huang, Hengchang Hu, Yushi Cao, Bryan Hooi, Roger Zimmermann

Direct-Effect Risk Minimization for Domain Generalization

Yuhui Li, Zejia Wu, Chao Zhang, Hongyang Zhang

Federated Frank-Wolfe Algorithm

Ali Dadras, Sourasekhar Banerjee, Karthik Prakhya, Alp Yurtsever

Bootstrap Latents of Nodes and Neighbors for Graph Self-Supervised Learning

Yunhui Liu, Huaisong Zhang, Tieke He, Tao Zheng, Jianhua Zhao

Deep Sketched Output Kernel Regression for Structured Prediction

Tamim El Ahmad, Junjie Yang, Pierre Laforgue, Florence d'Alch'e-Buc

Hyperbolic Delaunay Geometric Alignment

Aniss Aiman Medbouhi, Giovanni Luca Marchetti, Vladislav Polianskii, Alexander Kravberg, Petra Poklukar, Anastasia Varava, Danica Kragic

ApmNet: Toward Generalizable Visual Continuous Control with Pre-Trained Image Models

Haitao Wang, Hejun Wu

AdaHAT: Adaptive Hard Attention to the Task in Task-Incremental Learning

Pengxiang Wang, Hongbo Bo, Jun Hong, Weiru Liu, Kedian Mu

Probabilistic Circuits with Constraints via Convex Optimization

Soroush Ghandi, Benjamin Quost, Cassio de Campos

FedAR: Addressing Client Unavailability in Federated Learning

Chutian Jiang, Hansong Zhou, Xiaonan Zhang, Shayok Chakraborty

Selecting from Multiple Strategies Improves the Foreseeable Reasoning of Tool-Augmented Large Language Models

Yongchao Wu, Aron Henriksson

Estimating Direct and Indirect Causal Effects of Spatiotemporal Interventions in Presence of Spatial Interference

Sahara Ali, Omar Faruque, Jianwu Wang

Continuous Geometry-Aware Graph Diffusion via Hyperbolic Neural PDE

Jiaxu Liu, Xinping Yi, Sihao Wu, Xiangyu Yin, Tianle Zhang, Xiaowei Huang, Shi Jin

SpanGNN: Towards Memory-Efficient Graph Neural Networks via Spanning Subgraph Training

Xizhi Gu, Hongzheng Li, Shihong Gao, Xinyan Zhang, Lei Chen, Yingxia Shao

AKGNet: Attribute Knowledge Guided Unsupervised Lung-Infected Area Segmentation

Qing En, Yuhong Guo

Diffusion Model in Normal Gathering Latent Space for Time Series Anomaly Detection

Jiashu Han, Shanshan Feng, Min Zhou, Xinyu Zhang, Yew Soon Ong, Xutao Li

Permutation Dependent Feature Mixing for Multivariate Time Series Forecasting

Rikuto Yamazono, Hirotake Hachiya

Prior Bilinear-based Models for Knowledge Graph Completion

Jiayi Li, Ruilin Luo, Jiaqi Sun, Jing Xiao, Yujiu Yang

Thinking Like an Author: A Zero-shot Learning Approach to Keyphrase Generation with Large Language Model

Siyu Wang, Shengran Dai, Jianhui Jiang

Molecular Graph Representation Learning via Structural Similarity Information

Chengyu Yao, Hong Huang, Hang Gao, Fengge Wu, Haiming Chen, Junsuo Zhao

Efficient Privacy-preserving Truth Discovery and Copy Detection in Crowdsourcing

Xiu Susie Fang, Xinyang Du, Hao Chen, Ziqi Wei, Yong Zhan, Guohao Sun

FCFL: A Fairness Compensation-based Federated Learning Scheme with Accumulated Queues

Lingfu Wang, Zuobin Xiong, Guangchun Luo, Wei Li, Aiguo Chen

MMDL-based Data Augmentation with Domain Knowledge for Time Series Classification

Xiaosheng Li, Yifan Wu, Wei Jiang, Ying Li, Jianguo Li

FALCUN: A Simple and Efficient Deep Active Learning Strategy

Sandra Gilhuber, Anna Beer, Yunpu Ma, Thomas Seidl

Semi-Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling

Cassio F. Dantas, Raffaele Gaetano, Dino Ienco

Model Fusion via Neuron Transplantation

Muhammed Oz, Nicholas Kiefer, Charlotte Debus, Jasmin Horter, Achim Streit, Markus Gotz

Compressed Federated Reinforcement Learning with a Generative Model

Ali Beikmohammadi, Sarit Khirirat, Sindri Magn'usson

Walking Noise: On Layer-Specific Robustness of Neural Architectures against Noisy Computations and Associated Characteristic Learning Dynamics

Hendrik Borras, Bernhard Klein, Holger Froning

KAFÈ: Kernel Aggregation for Federated

Pian Qi, Diletta Chiaro, Fabio Giampaolo, Francesco Piccialli

On Suppressing Range of Adaptive Stepsizes of Adam to Improve Generalisation Performance

Guoqiang Zhang

Graph Attention Network with Relational Dynamic Factual Fusion for Knowledge Graph Completion

Mei Yu, Yilin Zuo, Wenbin Zhang, Mankun Zhao, Tianyi Xu, Yue Zhao, Jiujiang Guo, Jian Yu

Low-Hanging Fruit: Knowledge Distillation from Noisy Teachers for Open Domain Spoken Language Understanding

Cheng Chen, Bowen Xing, Ivor W. Tsang

The Price of Labelling: A Two-Phase Federated Self-Learning Approach

Tahani Aladwani, Shameem Puthiya Parambath, Christos Anagnostopoulos, Fani Deligianni

Disentangled Representations for Continual Learning: Overcoming Forgetting and Facilitating Knowledge Transfer

Zhaopeng Xu, Qi Qin, Bing Liu, Dongyan Zhao

On the Calibration of Epistemic Uncertainty: Principles, Paradoxes and Conflictual Loss

Mohammed Fellaji, Fr'ed'eric Pennerath, Brieuc Conan-Guez, Miguel Couceiro

Improving the Evaluation and Actionability of Explanation Methods for Multivariate Time Series Classification

Davide Italo Serramazza, Thach Le Nguyen, Georgiana Ifrim

Novel Node Category Detection Under Subpopulation Shift

Hsing-Huan Chung, Shravan Chaudhari, Yoav Wald, Xing Han, Joydeep Ghosh

SynODC: Utilizing the Syntactic Structure for Outlier Detection in Categorical Attributes

Arthur Zylinski, Abdulhakim A. Qahtan

FELIX: Automatic and Interpretable Feature Engineering Using LLMs

Simon Malberg, Edoardo Mosca, Georg Groh

Harnessing Superclasses for Learning from Hierarchical Databases

Nicolas Urbani, Sylvain Rousseau, Yves Grandvalet, Leonardo Tanzi

Approximation Error of Sobolev Regular Functions with tanh Neural Networks: Theoretical Impact on PINNs

Benjamin Girault, R'emi Emonet, Amaury Habrard, Jordan Patracone, Marc Sebban

An Extension of Universal Attacks from the Attacker's Viewpoint

Jordan Patracone, Paul Viallard, Emilie Morvant, Gilles Gasso, Amaury Habrard, St'ephane Canu

Linear Modeling of the Adversarial Noise Space

Jordan Patracone, Lucas Anquetil, Yuan Liu, Gilles Gasso, St'ephane Canu

Classifier-free graph diffusion for molecular property targeting

Matteo Ninniri, Marco Podda, Davide Bacciu

Sparse Explanations of Neural Networks Using Pruned Layer-Wise Relevance Propagation

Paulo Yanez Sarmiento, Simon Witzke, Nadja Klein, Bernhard Renard

ILPO-NET: Network for the Invariant Recognition of Arbitrary Volumetric Patterns in 3D

Dmitrii Zhemchuzhnikov, Sergei Grudinin

Deep Domain Isolation and Sample Clustered Federated Learning for semantic segmentation

Matthis Manthe, Carole Lartizien, Stefan Duffner

Pointer-Guided Pre-Training: Infusing Large Language Models with Paragraph-Level Contextual Awareness

Lars Hillebrand, Prabhupad Pradhan, Christian Bauckhage, Rafet Sifa

Cut-Stitch: a Simple and Effective Data Augmentation Method for Industrial Inspection

Haigen Hu, Jingshan Hong, Kangkang Song, Jinwei Zhu, Weilun Ren

Functional Latent Dynamics for Irregularly Sampled Time Series Forecasting

Christian Klotergens, Vijaya Krishna Yalavarthi, Maximilian Stubbemann, Lars Schmidt-Thieme

Learning Model Agnostic Explanations via Constraint Programming

Frederic Koriche, Jean-Marie Lagniez, Stefan Mengel, Chi Tran

Fair densest subgraph across multiple graphs

Chamalee Wickrama Arachchi, Nikolaj Tatti

A Human-Centric Assessment of the Usefulness of Attribution Methods in Computer Vision

Wiem Ben Rim, Ammar Shaker, Zhao Xu, Kiril Gashteovski, Bhushan Kotnis, Carolin Lawrence, Jurgen Quittek, Sascha Saralajew

Leveraging Plasticity in Incremental Decision Trees

Marco Heyden, Heitor Murilo Gomes, Edouard Fouché

Fast-FedUL: A Training-Free Federated Unlearning with Provable Skew Resilience

Thanh Trung Huynh, Trong Bang Nguyen, Phi Le Nguyen, Thanh Tam Nguyen, Matthias Weidlich, Quoc Viet Hung Nguyen, Karl Aberer

Input Compression with Positional Consistency for Efficient Training and Inference of Transformer Neural Networks

Amrit Nagarajan, Anand Raghunathan

Individual Fairness with Group Awareness under Uncertainty

Zichong Wang, Jocelyn Dzuong, Xiaoyong Yuan, Zhong Chen, Yanzhao Wu, Xin Yao, Wenbin Zhang

Generalizing Reward Modeling for Out-of-Distribution Preference Learning

Chen Jia

FedPrime: An Adaptive Critical Learning Periods Control Framework for Efficient Federated Learning in Heterogeneity Scenarios

Haizhou Du, Zhiyuan Yang

What Drives Online Popularity: Author, Content or Sharers? Estimating Spread Dynamics with Bayesian Mixture Hawkes

Pio Calderon, Marian-Andrei Rizoiu

Disagreement Evaluation of Solutions for Math Word Problem

Yehui Xu, Xuejie Zhang, Jin Wang, Xiaobing Zhou

Co-attention and Contrastive Learning Driven Knowledge Tracing

Ning Zheng, Zhilong Shan

TiNID: A Transfer and Interpretable LLM-enhanced Framework for New Intent Discovery

Shun Zhang, Chaoran Yan, Jian Yang, Wei Zhang, Changyu Ren, Tongliang Li, Jiaqi Bai, Zhoujun Li

Memory-enhanced Emotional Support Conversations with Motivation-driven Strategy Inference

Hao Wang, Bin Guo, Mengqi Chen, Yasan Ding, Qiuyun Zhang, Ying Zhang, Zhiwen Yu

Semi-Automated Construction of Complex Knowledge Base Question Answering Dataset using Large Language Model

Lily Hoang, Fiona Liausvia, Liu Yan, Thanh-Son Nguyen

Graphical Model-Based Lasso for Weakly Dependent Time Series of Tensors

Dorcas Ofori-Boateng, Jaidev Goel, Ivor Cribben, Yulia R. Gel

Multi-Label Adaptive Batch Selection by Highlighting Hard and Imbalanced Samples

Ao Zhou, Bin Liu, Zhaoyang Peng, Jin Wang, Grigorios Tsoumakas

Quantification Over Time

Feiyu Li, Hassan H. Gharakheili, Gustavo Batista

Approximating the Graph Edit Distance with Compact Neighborhood Representations

Franka Bause, Christian Permann, Nils M. Kriege

Online Lⁿatural-Convex Minimization

Ken Yokoyama, Shinji Ito, Tatsuya Matsuoka, Kei Kimura, Makoto Yokoo

Preserving real-world robustness of neural networks under sparsity constraints

Jasmin Viktoria Gritsch, Robert Legenstein, Ozan O

LTCR: Long Temporal Characteristic Reconstruction for Segmentation in Contrastive Learning

Yang He, Yuhan Wu, Junru Zhang, Yabo Dong

LATuner: An LLM-enhanced Database Tuning System based on Adaptive Surrogate Model

Chongjiong Fan, Zhicheng Pan, Wenwen Sun, Chengcheng Yang, Wei-Neng Chen

Improving Meta-learning for Few-shot Text Classification via Label Propagation

Haorui Li, Jie Shao, Xiangqiang Zeng, and Hui Xu

Zero-cost Transition to Multi-Document Processing in Summarization with Multi-Channel Attention

Minh-Quang Nguyen, Duy-Cat Can, Hoang-Quynh Le

PSP: Pre-Training and Structure Prompt Tuning for Graph Neural Networks

Qingqing Ge, Zeyuan Zhao, Yiding Liu, Anfeng Cheng, Xiang Li, Shuaiqiang Wang, Dawei Yin

Wiser than the Wisest of Crowds: The Asch Effect and Polarization Revisited

Dragos Ristache, Fabian Spaeh, Charalampos E. Tsourakakis

Rejection Ensembles with Online Calibration

Sebastian Buschjager

Lighter, Better, Faster Multi-Source Domain Adaptation with Gaussian Mixture Models and Optimal Transport

Eduardo Fernandes Montesuma, Fred Ngol`e Mboula, Antoine Souloumiac

Subgraph Retrieval Enhanced by Graph-Text Alignment for Commonsense Question Answering

Boci Peng, Yongchao Liu, Xiaohe Bo, Sheng Tian, Baokun Wang, Chuntao Hong, Yan Zhang

HetCAN: A Heterogeneous Graph Cascade Attention Network with Dual-Level Awareness

Zeyuan Zhao, Qingqing Ge, Anfeng Cheng, Yiding Liu, Xiang Li, Shuaiqiang Wang

Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis

Paolo Bonetti, Alberto Maria Metelli, Marcello Restelli

The Simpler The Better: An Entropy-Based Importance Metric To Reduce Neural Networks' Depth

Victor Qu'etu, Zhu Liao, Enzo Tartaglione

Towards Few-shot Self-explaining Graph Neural Networks

Jingyu Peng, Qi Liu, Linan Yue, Zaixi Zhang, Kai Zhang, Yunhao Sha

Uplift Modeling Under Limited Supervision

George Panagopoulos, Daniele Malitesta, Fragkiskos D. Malliaros, Jun Pang

Self-Supervised Spatial-Temporal Normality Learning for Time Series Anomaly Detection

Yutong Chen, Hongzuo Xum, Guansong Pang, Hezhe Qiao, Yuan Zhou, Mingsheng Shang

Modeling Text-Label Alignment for Hierarchical Text Classification

Ashish Kumar, Durga Toshniwal

Secure Aggregation is Not Private Against Membership Inference Attacks

Khac-Hoang Ngo, Johan Ostman, Giuseppe Durisi, Alexandre Graell i Amat

Evaluating Negation with Multi-way Joins Accelerates Class Expression Learning

Nikolaos Karalis, Alexander Bigerl, Caglar Demir, Liss Heidrich, Axel-Cyrille Ngonga Ngomo

LayeredLiNGAM: A Practical and Fast Method for Learning a Linear Non-Gaussian Structural Equation Model

Hirofumi Suzuki

Enhanced Bayesian Optimization via Preferential Modeling of Abstract Properties

Arun Kumar A V, Alistair Shilton, Sunil Gupta, Santu Rana, Stewart Greenhill, Svetha Venkatesh

Enhancing LLM's Reliability by Iterative Verification Attributions with Keyword Fronting

Yize Sui, Jing Ren, Huibin Tan, Huan Chen, Zhaoye Li, Ji Wang

Reconstructing the Unseen: GRIOT for Attributed Graph Imputation with Optimal Transport

Richard Serrano, Charlotte Laclau, Baptiste Jeudy, Christine Largeron

Introducing Total Harmonic Resistance for Graph Robustness under Edge Deletions

Lukas Berner, Henning Meyerhenke

Counterfactual-based Root Cause Analysis for Dynamical Systems

Juliane Weilbach, Sebastian Gerwinn, Karim Barsim, Martin Franzle

Dropout Regularization in Extended Generalized Linear Models based on Double Exponential Families

Benedikt Lutke Schwienhorst, Lucas Kock, Nadja Klein, David J. Nott

GLADformer: A Mixed Perspective for Graph-level Anomaly Detection

Fan Xu, Nan Wang, Hao Wu, Xuezhi Wen, Dalin Zhang, Siyang Lu, Binyong Li, Wei Gong, Hai Wan, Xibin Zhao

HiGraphDTI: Hierarchical Graph Representation Learning for Drug-Target Interaction Prediction

Bin Liu, Siqi Wu, Jin Wang, Xin Deng, Ao Zhou

On the Two Sides of Redundancy in Graph Neural Networks

Franka Bause, Samir Moustafa, Johannes Langguth, Wilfried N. Gansterer, Nils M. Kriege

Policy Control with Delayed, Aggregate, and Anonymous Feedback

Guilherme Dinis Junior, Sindri Magn'usson, Jaakko Hollm'en

DiffVersify: a scalable approach to differentiable pattern mining with coverage regularization

Thibaut Chataing, Julien Perez, Marc Plantevit, C'eline Robardet

Hierarchical Graph Contrastive Learning for Review-enhanced Recommendation

Changsheng Shui, Xiang Li, Jianpeng Qi, Guiyuan Jiang, Yanwei Yu

Linear Contextual Bandits with Hybrid Payoff: Revisited

Nirjhar Das, Gaurav Sinha

Data with Density-Based Clusters: A Generator for Systematic Evaluation of Clustering Algorithms

Philipp Jahn, Christian M. M. Frey, Anna Beer, Collin Leiber, Thomas Seidl

Model-Based Reinforcement Learning with Multi-Task Offline Pretraining

Minting Pan, Yitao Zheng, Yunbo Wang, Xiaokang Yang

Advancing Graph Counterfactual Fairness through Fair Representation Learning

Zichong Wang, Zhibo Chu, Ronald Blanco, Zhong Chen, Shu-Ching Chen, Wenbin Zhang

Continuously Deep Recurrent Neural Networks

Andrea Ceni, Peter Ford Dominey, Claudio Gallicchio, Alessio Micheli, Luca Pedrelli, Domenico Tortorella

Dynamics Adaptive Safe Reinforcement Learning with a Misspecified Simulator

Ruiqi Xue, Ziqian Zhang, Lihe Li, Feng Chen, Yi-Chen Li, Yang Yu, Lei Yuan

CRISPert: A Transformer-based Model for CRISPR-Cas Off-target Prediction

William Jobson Pargeter, Rolf Backofen, Van Dinh Tran

Improved Topology Features for Node Classification on Heterophilic Graphs

Yurui Lai, Taiyan Zhang, Rui Fan

Fast Redescription Mining Using Locality-Sensitive Hashing

Maiju Karjalainen, Esther Galbrun, Pauli Miettinen

σ-GPTs: A New Approach to Autoregressive Models

Arnaud Pannatier, Evann Courdier, Franc cois Fleuret

FairFlow: An Automated Approach to Model-based Counterfactual Data Augmentation For NLP

Ewoenam Kwaku Tokpo, Toon Calders

GrINd: Grid Interpolation Network for Scattered Observations

Andrzej Dulny, Paul Heinisch, Andreas Hotho, Anna Krause

MEGA: Multi-Encoder GNN Architecture for stronger task collaboration and generalization

Faraz Khoshbakhtian, Gaurav Oberoi, Dionne Aleman, Siddhartha Asthana

MetaQuRe: Meta-Learning from Model Quality and Resource Consumption

Raphael Fischer, Marcel Wever, Sebastian Buschjager, Thomas Liebig

Propagation Structure-Semantic Transfer Learning for Robust Fake News Detection

Mengyang Chen, Lingwei Wei, Han Cao, Wei Zhou, Zhou Yan, Songlin Hu

Exploring Contrastive Learning for Long-Tailed Multi-Label Text Classification

Alexandre Audibert, Aur'elien Gauffre, Massih-Reza Amini

Simultaneous Linear Connectivity of Neural Networks Modulo Permutation

Ekansh Sharma, Devin Kwok, Tom Denton, Daniel M. Roy, David Rolnick, Gintare Karolina Dziugaite

Fast Fishing: Approximating BAIT for Efficient and Scalable Deep Active Image Classification

Denis Huseljic, Paul Hahn, Marek Herde, Lukas Rauch, Bernhard Sick

Understanding Domain-Size Generalization in Markov Logic Networks

Florian Chen, Felix Weitkämpfer, Sagar Malhotra

Retrieval-Augmented Mining of Temporal Logic Specifications from Data

Gaia Saveri, Luca Bortolussi

CAM-Based Methods Can See through Walls

Magamed Taimeskhanov, Ronan Sicre, Damien Garreau

Making Alice Appear Like Bob: A Probabilistic Preference Obfuscation Method For Implicit Feedback Recommendation Models

Gustavo Escobedo, Marta Moscati, Peter Muellner, Simone Kopeinik, Dominik Kowald, Elisabeth Lex, Markus Schedl

Leiden-Fusion Partitioning Method for Effective Distributed Training of Graph Embeddings

Yuhe Bai, Camelia Constantin, Hubert Naacke

Automated Design of Linear Bounding Functions for Sigmoidal Nonlinearities in Neural Networks

Matthias Konig, Xiyue Zhang, Holger H. Hoos, Marta Kwiatkowska, Jan N. van Rijn

Efficiently Predicting Mutational Effect on Homologous Proteins by Evolution Encoding

Zhiqiang Zhong, Davide Mottin

Interpretable and Fair Mechanisms for Abstaining Classifiers

Daphne Lenders, Andrea Pugnana, Roberto Pellungrini, Toon Calders, Dino Pedreschi, Fosca Giannotti

Boosting Long-Tail Data Classification with Sparse Prototypical Networks

Alexei Figueroa, Jens-Michalis Papaioannou, Conor Fallon, Alexandra Bekiaridou, Keno Bressem, Stavros Zanos, Felix Gers, Wolfgang Nejdl, Alexander Loser

A Unified Contrastive Loss for Self-Training

Aurélien Gauffre, Julien Horvat, Massih-Reza Amini

Achieving Counterfactual Explanation for Sequence Anomaly Detection

He Cheng, Depeng Xu, Shuhan Yuan, Xintao Wu

Hierarchical Structure-aware Graph Prompting for Drug-Drug Interaction Prediction

Yuhan Ye, Jingbo Zhou, Shuangli Li, Congxi Xiao, Haochao Ying, Hui Xiong

Frugal Generative Modeling for Tabular Data

Alice Lacan, Blaise Hanczar, Michele Sebag

Employing Two-Dimensional Word Embedding for Difficult Tabular Data Stream Classification

Paweł Zyblewski

Centered Masking for Language-Image Pre-Training

Mingliang Liang, Martha Larson

Univariate Skeleton Prediction in Multivariate Systems Using Transformers

Giorgio Morales, John W. Sheppard

Adaptive Certified Training: Towards Better Accuracy-Robustness Tradeoffs

Zhakshylyk Nurlanov, Frank R. Schmidt, Florian Bernard

Real-Part Quantum Support Vector Machines

Nico Piatkowski, Sascha Mucke

Tackling Oversmoothing in GNN via Graph Sparsification

Tanvir Hossain, Khaled Mohammed Saifuddin, Muhammad Ifte Khairul Islam, Farhan Tanvir, Esra Akbas

Enhancing Shortest-Path Graph Kernels via Graph Augmentation

Wei Ye, Hao Tian, Shuhao Tang, Xin Sun

Hyperbolic Contrastive Learning with Model-augmentation for Knowledge-aware Recommendation

Shengyin Sun, Chen Ma

Harnessing the Power of Prompt Experts: Efficient Knowledge Distillation for Enhanced Language Understanding

Xv Meng, Jun Rao, Shuhan Qi, Lei Wang, Jing Xiao, Xuan Wang

Adaptive Knowledge Distillation for Classification of Hand Images using Explainable Vision Transformers

Thanh Thi Nguyen, Campbell Wilson, Janis Dalins

Adaptively Denoising Graph Neural Networks for Knowledge Distillation

Yuxin Guo, Cheng Yang, Chuan Shi, Ke Tu, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou

Lifelong Hierarchical Topic Modeling via Nonparametric Word Embedding Clustering

Jiaxing Yan, Yuyin Lu, Hegang Chen, Jianxing Yu, Yanghui Rao

High-Dimensional Bayesian Optimization via Random Projection of Manifold Subspaces

Quoc-Anh Nguyen, The Hung Tran

CUQ-GNN: Committee-based Graph Uncertainty Quantification using Posterior Networks

Clemens Damke, Eyke Hullermeier

Bundle Recommendation with Item-level Causation-enhanced Multi-view Learning

Huy-Son Nguyen, Tuan-Nghia Bui, Long-Hai Nguyen, Hung Hoang, Cam-Van Thi Nguyen, Hoang-Quynh Le, Duc-Trong Le

Towards Context and Semantic Infused Dialogue Generation Loss Function

Abhisek Tiwari, Muhammed Sinan, Kaushik Roy, Amit Sheth, Sriparna Saha, Pushpak Bhattacharyya

GRETEL 2.0: Generation and Evaluation of Graph Counterfactual Explanations Evolved

Mario Alfonso Prado-Romero, Bardh Prenkaj, Giovanni Stilo

CityFlowER: An Efficient and Realistic Traffic Simulator with Embedded Machine Learning Models

Longchao Da, Chen Chu, Weinan Zhang, Hua Wei

ART: Actually Robust Training

Sebastian Chwilczyński, Kacper Trębacz, Karol Cyganik, Mateusz Małecki, Dariusz Brzeziński

Pattern or Artifact? Interactively Exploring Embedding Quality with TRACE

Edith Heiter, Liesbet Martens, Ruth Seurinck, Martin Guilliams, Tijl De Bie, Yvan Saeys, Jefrey Lijffijt

Interactive motif discovery in time series with persistent homology

Thibaut Germain, Charles Truong, Laurent Oudre

LLM Support for Real-Time Technical Assistance

Vincenzo Scotti, Mark James Carman

RE-GrievanceAssist: Enhancing Customer Experience through ML-Powered Complaint Management

Venkatesh C, Harshit Oberoi, Anurag Kumar Pandey, Anil Goyal, Nikhil Sikka

An Interactive Tool for Interpretability of Time Series Classification

Brigt Haa vardstun, César Ferri, Jan Arne Telle

FuseRank (Demo): Filtered Vector Search in Multimodal Structured Data

Dimitris Paraschakis, Rasmus Ros, Markus Borg, Per Runeson

KamerRaad: Enhancing Information Retrieval in Belgian National Politics through Hierarchical Summarization and Conversational Interfaces

Alexander Rogiers, Maarten Buyl, Bo Kang, Tijl De Bie

Subgroup Harm Assessor: Identifying Potential Fairness-Related Harms and Predictive Bias

Adam Dubowski, Hilde Weerts, Anouk Wolters, Mykola Pechenizkiy

FinQA: A Training-free Dynamic Knowledge Graph Question Answering System in Finance with LLM-based Revision

Wenbiao Tao, Hanlun Zhu, Keren Tan, Jiani Wang, Yuanyuan Liang, Huihui Jiang, Pengcheng Yuan, Yunshi Lan

LLaMA-Annotate—Visualizing token-level confidences for LLMs

Erik Schultheis, ST John

Scalable Interactive Data Visualization

Florian Chen, Thomas Gärtner

VulEXplaineR: XAI for Vulnerability Detection on Assembly Code

Samaneh Mahdavifar, Mohd Saqib, Benjamin C. M. Fung, Philippe Charland, Andrew Walenstein

Guiding Catalogue Enrichment with User Queries

Yupei Du, Jacek Golebiowski, Philipp Schmidt, Ziawasch Abedjan

PeersimGym: An Environment for Solving the Task Offloading Problem with Reinforcement Learning

Frederico Metelo, Cláudia Soares, Stevo Racković, Pedro 'Akos Costa

Robust Interaction-based Relevance Modeling for Online E-Commerce Search

Ben Chen, Huangyu Dai, Xiang Ma, Wen Jiang, Wei Ning

Learning Optimal Linear Precoding for Cell-Free Massive MIMO with GNN

Benjamin Parlier, Lou Salaun, Hong Yang

Multiple Hypergraph Learning for Ephemeral Group Recommendation

Rui Zhao, Beihong Jin, Yimin Lv, Yiyuan Zheng, Weijiang Lai

Spoofing Transaction Detection with Group Perceptual Enhanced Graph Neural Network

Le Kang, Tai-Jiang Mu, XiaoDong Ning

Self-SLAM: A Self-Supervised Learning Based Annotation Method to Reduce Labeling Overhead

Alfiya M. Shaikh, Hrithik Nambiar, Kshitish Ghate, Swarnali Banik, Sougata Sen, Surjya Ghosh, Vaskar Raychoudhury, Niloy Ganguly, Snehanshu Saha

Multi-intent Driven Contrastive Sequential Recommendation

Yiyuan Zheng, Beibei Li, Beihong Jin, Rui Zhao, Weijiang Lai, Tao Xiang

KAT5: Knowledge-Aware Transfer Learning with a Text-to-Text Transfer Transformer

Mohammad Golam Sohrab, Makoto Miwa

Asymmetric Graph-based Deep Reinforcement Learning for Portfolio Optimization

Haoyu Sun, Xin Liu, Yuxuan Bian, Peng Zhu, Dawei Cheng, Yuqi Liang

Code Summarization with Project-Specific Features

Yu Wang, Xin Liu, Xuesong Lu, Aoying Zhou

Unraveling Anomalies in Time: Unsupervised Discovery and Isolation of Anomalous Behavior in Bio-regenerative Life Support System Telemetry

Ferdinand Rewicki, Jakob Gawlikowski, Julia Niebling, Joachim Denzler

Long-term Fairness in Ride-Hailing Platform

Yufan Kang, Jeffrey Chan, Wei Shao, Flora D. Salim, Christopher Leckie

A Merge Sort Based Ranking System for the Evaluation of Large Language Models

Chenchen Li, Linfeng Shi, Chunyi Zhou, Zhaoxin Huan, Chengfu Tang, Xiaolu Zhang, Xudong Wang, Jun Zhou, Song Liu

Enhancing HVAC Control Efficiency: A Hybrid Approach Using Imitation and Reinforcement Learning

Kevlyn Kadamala, Des Chambers, Enda Barrett

Synthesis of Standard 12-lead ECG from Single-lead ECG using Shifted Diffusion Models

Jingwei Liu, Hongyan Li, Shenda Hong

SAGS-DynamicBio: Integrating Semantic-Aware and Graph Structure-Aware Embedding for Dynamic Biological Data with Knowledge Graphs

Yao Liu, Yongfei Zhang, Xin Wang

Graph Machine Learning for fast product development from formulation trials

Manuel Dileo, Raffaele Olmeda, Margherita Pindaro, Matteo Zignani

HPExplorer: XAI method to explore the relationship between hyperparameters and model performance

Yulia Grushetskaya, Mike Sips, Reyko Schachtschneider, Mohammadmehdi Saberioon, Akram Mahan

Boosting Patient Representation Learning via Graph Contrastive Learning

Zhenhao Zhang, Yuxi Liu, Jiang Bian, Antonio Jimeno Yepes, Jun Shen, Fuyi Li, Guodong Long, Flora D. Salim

Time Series Clustering for Enhanced Dynamic Allocation in A/B Testing

Emmanuelle Claeys, Myriam Maumy-Bertrand, Pierre Gancc

Reinforcement learning meets microeconomics: Learning to designate price-dependent supply and demand for automated trading

Łukasz Lepak, Paweł Wawrzynski

Spatial Transfer Learning for Estimating PM₂.₅ in Data-poor Regions

Shrey Gupta, Yongbee Park, Jianzhao Bi, Suyash Gupta, Andreas Züfle, Avani Wildani, Yang Liu

Leveraging Foundation Models for Multi-modal Federated Learning with Incomplete Modality

Liwei Che, Jiaqi Wang, Xinyue Liu, Fenglong Ma

Contrastive Learning Enhanced Diffusion Model for Improving Tropical Cyclone Intensity Estimation with Test-time Adaptation

Ziheng Zhou, Haojia Zuo, Ying Zhao, Wenguang Chen

BESTMVQA: A Benchmark Evaluation System for Medical Visual Question Answering

Xiaojie Hong, Zixin Song, Liangzhi Li, Xiaoli Wang, Feiyan Liu

AeroINR: Meta-learning for efficient generation of aerodynamic geometries

Tom Bamford, David Toal, Andy Keane

MT-HCCAR: Multi-Task Deep Learning with Hierarchical Classification and Attention-based Regression for Cloud Property Retrieval

Xingyan Li, Andrew M. Sayer, Ian T. Carroll, Xin Huang, Jianwu Wang

Machine Learning Based Tool for Automated Sperm Cell Tracking and Sperm Bundle Detection

Jakub Horenin, Veronika Magdanz, Islam S. M. Khalil, Anke Klingner, Alexander Kovalenko, Miroslav v Cepek

DISCO: An End-to-End Bandit Framework for Personalised Discount Allocation

Jason Shuo Zhang, Benjamin Howson, Panayiota Savva, Eleanor Loh

Advancing Solar Flare Prediction using Deep Learning with Active Region Patches

Chetraj Pandey, Temitope Adeyeha, Jinsu Hong, Rafal A. Angryk, Berkay Aydin

Exceptional Subitizing Patterns: Exploring Mathematical Abilities of Finnish Primary School Children with Piecewise Linear Regression

Rianne M. Schouten, Wouter Duivesteijn, Pekka Räsänen, Jacob M. Paul, Mykola Pechenizkiy

Intent Enhanced Self-Supervised Hypergraph Learning for Session-Based Recommendation

Xiu Susie Fang, Yonggang Wu, Jinhu Lu, Xiaoyu Gu, Guohao Sun, Yong Zhan

Missing Data Imputation: Do Advanced ML/DL Techniques Outperform Traditional Approaches?

Youran Zhou, Mohamed Reda Bouadjenek, Sunil Aryal

Evaluating Vision Transformer Models for Visual Quality Control in Industrial Manufacturing

Miriam Alber, Christoph Hönes, Patrick Baier

GraphRPM: Risk Pattern Mining on Industrial Large Attributed Graphs

Sheng Tian, Xintan Zeng, Yifei Hu, Baokun Wang, Yongchao Liu, Yue Jin, Changhua Meng, Chuntao Hong, Tianyi Zhang, Weiqiang Wang

Solving a Real-World Optimization Problem Using Proximal Policy Optimization with Curriculum Learning and Reward Engineering

Abhijeet Pendyala, Asma Atamna, Tobias Glasmachers

Spatial-Temporal PDE Networks for Traffic Flow Forecasting

Tianshu Bao, Hua Wei, Junyi Ji, Daniel Work, Taylor Thomas Johnson

Symbolic Prompt Tuning Completes the App Promotion Graph

Zhongyu Ouyang, Chunhui Zhang, Shifu Hou, Shang Ma, Chaoran Chen, Toby Li, Xusheng Xiao, Yanfang Ye

Boosting Protein Language Models with Negative Sample Mining

Yaoyao Xu, Xinjian Zhao, Xiaozhuang Song, Benyou Wang, Tianshu Yu

MedSyn: LLM-based Synthetic Medical Text Generation Framework

Gleb Kumichev, Pavel Blinov, Yulia Kuzkina, Vasily Goncharov, Galina Zubkova, Nikolai Zenovkin, Aleksei Goncharov, Andrey Savchenko

A Crystal Knowledge-enhanced Pre-training Framework for Crystal Property Estimation

Haomin Yu, Yanru Song, Jilin Hu, Chenjuan Guo, Bin Yang, Christian S. Jensen

Multiplex Community Detection for Resilient Electrical Segmentation Enabling Management of an Increasingly Complex Power Grid

Noureddine Henka, Sami Tazi, Mohamad Assaad

Bandits for Sponsored Search Auctions under Unknown Valuation Model: Case Study in E-Commerce Advertising

Danil Provodin, Jérémie Joudioux, Eduard Duryev

Unbiased Recommendation through Invariant Representation Learning

Min Tang, Lixin Zou, Shujie Cui, Shiuan-ni Liang, Zhe Jin

Enhancing Multi-Objective Optimisation through Machine Learning-Supported Multiphysics Simulation

Diego Botache, Jens Decke, Winfried Ripken, Abhinay Dornipati, Franz Gotz-Hahn, Mohamed Ayeb, Bernhard Sick

DistALANER: Distantly Supervised Active Learning Augmented Named Entity Recognition in the Open Source Software Ecosystem

Somnath Banerjee, Avik Dutta, Aaditya Agrawal, Rima Hazra, Animesh Mukherjee

DiffSynth: Latent In-Iteration Deflickering for Realistic Video Synthesis

Zhongjie Duan, Lizhou You, Chengyu Wang, Cen Chen, Ziheng Wu, Weining Qian, Jun Huang

Offline Imitation of Badminton Player Behavior via Experiential Contexts and Brownian Motion

Kuang-Da Wang, Wei-Yao Wang, Ping-Chun Hsieh, Wen-Chih Peng

Fast and Adaptive Questionnaires for Voting Advice Applications

Fynn Bachmann, Cristina Sarasua, Abraham Bernstein

Job Title Prediction as A Dual Task of Expertise Prediction in Open Source Software

Xin Liu, Yu Wang, Qiwen Dong, Xuesong Lu

LLMs in the Loop: Leveraging Large Language Model Annotations for Active Learning in Low-Resource Languages

Nataliia Kholodna, Sahib Julka, Mohammad Khodadadi, Muhammed Nurullah Gumus, Michael Granitzer

Multi-spectral Gradient Residual Network For Haze Removal In Multi-sensor Remote Sensing Imagery

Xian Yang, Ranga Raju Vatsavai

ExTea: An Evolutionary Algorithm-Based Approach for Enhancing Explainability in Time-Series Models

Yiran Huang, Yexu Zhou, Haibin Zhao, Likun Fang, Till Riedel, Michael Beigl

BiCAE – A Bimodal Convolutional Autoencoder for Seed Purity Testing

Maksim Kukushkin, Martin Bogdan, Thomas Schmid