Preprints 2023

Learning Objective-Specific Active Learning Strategies with Attentive Neural Processes

Tim Bakker, Herke van Hoof, Max Welling

REAL: A Representative Error Driven Approach for Active Learning

Cheng Chen, Yong Wang, Lizi Liao, Yueguo Chen, Xiaoyong Du

Knowledge-driven Active Learning

Gabriele Ciravegna, Frédéric Precioso, Alessandro Betti, Kevin Mottin, Marco Gori

ActiveGLAE: A Benchmark for Deep Active Learning with Transformers

Lukas Rauch, Matthias Aßenmacher, Denis Huseljic, Moritz Wirth, Bernd Bischl, Bernhard Sick

DiffusAL: Coupling Active Learning with Graph Diffusion for Label-Efficient Node Classification

Sandra Gilhuber, Julian Busch, Daniel Rotthues, Christian M.M. Frey, Thomas Seidl

Quantifying Robustness to Adversarial Word Substitutions

Yuting Yang, Pei Huang, Juao Cao, Feifei Ma, Jian Zhang, Jintao Li

Enhancing Adversarial Training via Reweighting Optimization Trajectory

Tianjin Huang, Shiwei Liu, Tianlong Chen, Meng Fang, Li Shen, Vlado Menkovski, Lu Yin, Yulong Pei, Mykola Pechenizkiy

Adversarial Imitation Learning with Controllable Rewards for Text Generation

Keizaburo Nishikino, Kenichi Kobayashi

Towards Minimising Perturbation Rate for Adversarial Machine Learning with Pruning

Zhiyu Zhu, Jiayu Zhang, Zhibo Jin, Xinyi Wang, Minhui Xue, Jun Shen, Kim-Kwang Raymond Choo, Huaming Chen

Adversarial Sample Detection Through Neural Network Transport Dynamics

Skander Karkar, Patrick Gallinari, Alain Rakotomamonjy

CVTGAD: Simplified Transformer with Cross-View Attention for Unsupervised Graph-level Anomaly Detection

Jindong Li, Qianli Xing, Qi Wang, Yi Chang

Graph-level Anomaly Detection via Hierarchical Memory Networks

Chaoxi Niu, Guansong Pang, Ling Chen

Semi-Supervised Learning from Active Noisy Soft Labels for Anomaly Detection

Timo Martens, Lorenzo Perini, Jesse Davis

Learning with Noisy Labels by Adaptive Gradient-Based Outlier Removal

Anastasiia Sedova, Lena Zellinger, Benjamin Roth

DSV: An Alignment Validation Loss for Self-supervised Outlier Model Selection

Jaemin Yoo, Yue Zhao, Lingxiao Zhao, Leman Akoglu

Marvolo: Programmatic Data Augmentation for Deep Malware Detection

Mike Wong, Edward Raff, James Holt, Ravi Netravali

A Transductive Forest for Anomaly Detection with Few Labels

Jingrui Zhang, Ninh Pham, Gillian Dobbie

Co-evolving Graph Reasoning Network for Emotion-Cause Pair Extraction

Bowen Xing, Ivor W. Tsang

SpotGAN: A Reverse-Transformer GAN Generates Scaffold-Constrained Molecules with Property Optimization

Chen Li, Yoshihiro Yamanishi

Spatio-temporal Pyramid Networks for Traffic Forecasting

Jia Hu, Chu Wang, Xianghong Lin

A Passage Retrieval Transformer-based Re-ranking Model for Truthful Consumer Health Search

Rishabh Upadhyay, Gabriella Pasi, Marco Viviani

KESHEM: Knowledge Enabled Short Health Misinformation Detection Framework

Fei Liu, Yibo Li, Meiyun Zuo

Dynamic Thresholding for Accurate Crack Segmentation using Multi-Objective Optimization

Qin Lei, Jiang Zhong, Chen Wang, Yang Xia, Yangmei Zhou

CoSP: Co-supervised pre-training of pocket and ligand

Zhangyang Gao, Cheng Tan, Jun Xia, Stan Z. Li

Decompose, Then Reconstruct: A Framework of Network Structures for Click-Through Rate Prediction

Jiaming Li, Lang Lang, Zhenlong Zhu, Haozhao Wang, Ruixuan Li, Wenchao Xu

DynaBench: A benchmark dataset for learning dynamical systems from low-resolution data

Andrzej Dulny, Andreas Hotho, Anna Krause

Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry

Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann, David Rügamer

Cooperative Bayesian optimization for imperfect agents

Ali Khoshvishkaie, Petrus Mikkola, Pierre-Alexandre Murena, Samuel Kaski

Leveraging Variational Autoencoders for Multiple Data Imputation

Breeshey Roskams-Hieter, Jude Wells, Sara Wade

A New Framework for Classifying Probability Density Functions

Anis Fradi, Chafik Samir

Learning Conditional Instrumental Variable Representation for Causal Effect Estimation

Debo Cheng, Ziqi Xu, Jiuyong Li, Lin Liu, Thuc Duy Le, Jixue Liu

A kNN-based Non-Parametric Conditional Independence Test for Mixed Data and Application in Causal Discovery

Johannes Huegle, Christopher Hagedorn, Rainer Schlosser

PEACE: Cross-Platform Hate Speech Detection - A Causality-guided Framework

Paras Sheth, Tharindu Kumarage, Raha Moraffah, Aman Chadha, Huan Liu

Estimating Treatment Effects Under Heterogeneous Interference

Xiaofeng Lin, Guoxi Zhang, Xiaotian Lu, Han Bao, Koh Takeuchi, Hisashi Kashima

Regularization for uplift regression

Krzysztof Rudaś, Szymon Jaroszewicz

Powered Dirichlet Process - Controlling the ``Rich-Get-Richer'' Assumption in Bayesian Clustering

Gaël Poux-Médard, Julien Velcin, Sabine Loudcher

Contrastive Hierarchical Clustering

Michał Znalezniak, Przemysław Rola, Patryk Kaszuba, Jacek Tabor, Marek Śmieja

Contrastive Learning with Cluster-preserving Augmentation for Attributed Graph Clustering

Yimei Zheng, Caiyan Jia, Jian Yu

k-SubMix: Common Subspace Clustering on Mixed-Type Data

Mauritius Klein, Collin Leiber, Christian Böhm

Transformer-based Contrastive Multi-view Clustering via Ensembles

Mingyu Zhao, Weidong Yang, Feiping Nie

A Deep Dynamic Latent Block Model for the Co-clustering of Zero-Inflated Data Matrices

Giulia Marchello, Marco Corneli, Charles Bouveyron

cuSLINK: Single-Linkage Agglomerative Clustering on the GPU

Corey J. Nolet, Divye Gala, Alex Fender, Mahesh Doijade, Joe Eaton, Edward Raff, John Zedlewski, Brad Rees, Tim Oates

Socially Fair Center-based and Linear Subspace Clustering

Sruthi Gorantla, Kishen N Gowda, Amit Deshpande, Anand Louis

Visualizing Overlapping Biclusterings and Boolean Matrix Factorizations

Thibault Marette, Pauli Miettinen, Stefan Neumann

Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

Wenkai Chen, Chuang Zhu, Mengting Li

DCID - Deep Canonical Information Decomposition

Alexander Rakowski, Christoph Lippert

Negative Prototypes Guided Contrastive Learning for Weakly Supervised Object Detection

Yu Zhang, Chuang Zhu, Guoqing Yang, Siqi Chen

Voting from Nearest Tasks: Meta-Vote Pruning of Pre-trained Models for Downstream Tasks

Haiyan Zhao, Tianyi Zhou, Guodong Long, Jing Jiang, Chengqi Zhang

Make A Long Image Short: Adaptive Token Length for Vision Transformers

Qiqi Zhou, Yichen Zhu

Graph Rebasing and Joint Similarity Reconstruction for Cross-Modal Hash Retrieval

Dan Yao, Zhixin Li

ARConvL: Adaptive Region-Based Convolutional Learning for Multi-class Imbalance Classification

Shuxian Li, Liyan Song, Xiaoyu Wu, Zheng Hu, Yiu-ming Cheung, Xin Yao

Binary domain generalization for sparsifying binary neural networks

Riccardo Schiavone, Francesco Galati, Maria A. Zuluaga

Efficient Hyperdimensional Computing

Zhanglu Yan, Shida Wang, Kaiwen Tang, Weng-Fai Wong

Rényi Divergence Deep Mutual Learning

Weipeng Fuzzy Huang, Junjie Tao, Changbo Deng, Ming Fan, Wenqiang Wan, Qi Xiong, Guangyuan Piao

Is my Neural Net driven by the MDL Principle?

Eduardo Brandao, Stefan Duffner, Rémi Emonet, Amaury Habrard, François Jacquenet, Marc Sebban

Scoring rule nets: Beyond mean target prediction in multivariate regression

Daan Roordink, Sibylle Hess

Learning distinct features helps, provably

Firas Laakom, Jenni Raitoharju, Alexandros Iosifidis, Moncef Gabbouj

Continuous Depth Recurrent Neural Differential Equations

Srinivas Anumasa, Geetakrishnasai Gunapati, P.K. Srijith

Mitigating Algorithmic Bias with Limited Annotations

Guanchu Wang, Mengnan Du, Ninghao Liu, Na Zou, Xia Hu

FG²AN: Fairness-aware Graph Generative Adversarial Networks

Zichong Wang, Charles Wallace, Albert Bifet, Xin Yao, Wenbin Zhang

Targeting the Source: Selective Data Curation for Debiasing NLP Models

Yacine Gaci, Boualem Benatallah, Fabio Casati, Khalid Benabdeslem

Fairness in Multi-Task Learning via Wasserstein Barycenters

François Hu, Philipp Ratz, Arthur Charpentier

REST: Enhancing Group Robustness in DNNs through Reweighted Sparse Training

Jiaxu Zhao, Lu Yin, Shiwei Liu, Meng Fang, Mykola Pechenizkiy

How To Overcome Confirmation Bias in Semi-Supervised Image Classification By Active Learning

Sandra Gilhuber, Rasmus Hvingelby, Mang Ling Ada Fok, Thomas Seidl

Towards Practical Federated Causal Structure Learning

Zhaoyu Wang, Pingchuan Ma, Shuai Wang

Triplets Oversampling for Class Imbalanced Federated Datasets

Chenguang Xiao, Shuo Wang

Learning Fast and Slow: Towards Inclusive Federated Learning

Muhammad Tahir Munir, Muhammad Mustansar Saeed, Mahad Ali, Zafar Ayyub Qazi, Agha Ali Raza, Ihsan Ayyub Qazi

Practical and General Backdoor Attacks against Vertical Federated Learning

Yuexin Xuan, Xiaojun Chen, Zhendong Zhao, Bisheng Tang, Ye Dong

Not All Tasks are Equal: a Parameter-efficient Task Reweighting Method for Few-shot learning

Xin Liu, Yilin Lyu, Liping Jing, Tieyong Zeng, Jian Yu

Boosting Generalized Few-Shot Learning by Scattering Intra-Class Distribution

Yunlong Yu, Lisha Jin, Yingming Li

vMF Loss: Exploring a Scattered Intra-class Hypersphere for Few-shot Learning

Xin Liu, Shijing Wang, Kairui Zhou, Yilin Lyu, Mingyang Song, Liping Jing, Tieyong Zeng, Jian Yu

Meta-HRNet: A High Resolution Network for Coarse-to-Fine Few-Shot Classification

Zhaochen Li, Kedian Mu

MuSE: A Multi-scale Emotional Flow Graph Model for Empathetic Dialogue Generation

Deji Zhao, Donghong Han, Ye Yuan, Chao Wang, Shuangyong Song

Posterior Consistency for Missing Data in Variational Autoencoders

Timur Sudak, Sebastian Tschiatschek

KnowPrefix-Tuning: A Two-Stage Prefix-Tuning Framework for Knowledge-Grounded Dialogue Generation

Jiaqi Bai, Zhao Yan, Ze Yang, Jian Yang, Xinnian Liang, Hongcheng Guo, Zhoujun Li

Learning Data Representations with Joint Diffusion Models

Kamil Deja, Tomasz Trzciński, Jakub M. Tomczak

MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation

Clément Vignac, Nagham Osman, Laura Toni, Pascal Frossard

Cold-start Multi-hop Reasoning by Hierarchical Guidance and Self-verification

Mayi Xu, Ke Sun, Yongqi Li, Tieyun Qian

Efficient Fine-tuning Large Language Models for Knowledge-Aware Response Planning

Minh Nguyen, Kishan K C, Toan Nguyen, Ankit Chadha, Thuy Vu

Attentive Multi-Layer Perceptron for Non-autoregressive Generation

Shuyang Jiang, Jun Zhang, Jiangtao Feng, Lin Zheng, Lingpeng Kong

MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are Better Dense Retrievers

Kun Zhou, Xiao Liu, Yeyun Gong, Wayne Xin Zhao, Daxin Jiang, Nan Duan, Ji-Rong Wen

Duplicate Multi-modal Entities Detection with Graph Contrastive Self-training Network

Shuyun Gu, Xiao Wang, Chuan Shi

Graph Contrastive Representation Learning with Input-aware and Cluster-aware Regularization

Jin Li, Bingshi Li, Qirong Zhang, Xinlong Chen, Xinyang Huang, Longkun Guo, Yang-Geng Fu

Temporal Graph Representation Learning with Adaptive Augmentation Contrastive

Hongjiang Chen, Pengfei Jiao, Huijun Tang, Huaming Wu

Hierarchical Graph Contrastive Learning

Hao Yan, Senzhang Wang, Jun Yin, Chaozhuo Li, Junxing Zhu, Jianxin Wang

Learning to Augment Graph Structure for both Homophily and Heterophily Graphs

Lirong Wu, Cheng Tan, Zihan Liu, Zhangyang Gao, Haitao Lin, Stan Z. Li

Learning Representations for Bipartite Graphs using Multi-Task Self-Supervised Learning

Akshay Sethi, Sonia Gupta, Aakarsh Malhotra, Siddhartha Asthana

ChiENN: Embracing Molecular Chirality with Graph Neural Networks

Piotr Gaiński, Michał Koziarski, Marek Śmieja, Jacek Tabor

Multi-Label Image Classification with Multi-Scale Global-Local Semantic Graph Network

Wenlan Kuang, Qiangxi Zhu, Zhixin Li

CasSampling: Exploring Efficient Cascade Graph Learning for Popularity Prediction

Guixiang Cheng, Xin Yan, Shengxiang Gao, Guangyi Xu, Xianghua Miao

Boosting Adaptive Graph Augmented MLPs via Customized Knowledge Distillation

Shaowei Wei, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou

ENGAGE: Explanation Guided Data Augmentation for Graph Representation Learning

Yucheng Shi, Kaixiong Zhou, Ninghao Liu

Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in Symmetric Positive Definite Matrices

Wei Zhao, Federico Lopez, J. Maxwell Riestenberg, Michael Strube, Diaaeldin Taha, Steve Trettel

Leveraging Free Labels to Power Up Heterophilic Graph Learning in Weakly-Supervised Settings: An Empirical Study

Xugang Wu, Huijun Wu, Ruibo Wang, Duanyu Li, Xu Zhou, Kai Lu

Train Your Own GNN Teacher: Graph-Aware Distillation on Textual Graphs

Costas Mavromatis, Vassilis N. Ioannidis, Shen Wang, Da Zheng, Soji Adeshina, Jun Ma, Han Zhao, Christos Faloutsos, George Karypis

The Mont Blanc of Twitter: Identifying Hierarchies of Outstanding Peaks in Social Networks

Maximilian Stubbemann, Gerd Stumme

RBNets: A Reinforcement Learning Approach for Learning Bayesian Network Structure

Zuowu Zheng, Chao Wang, Xiaofeng Gao, Guihai Chen

A Unified Spectral Rotation Framework Using a Fused Similarity Graph

Yuting Liang, Wen Bai, Yuncheng Jiang

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search

Liping Yan, Weiren Yu

Online Network Source Optimization with Graph-Kernel MAB

Laura Toni, Pascal Frossard

Quantifying Node-based Core Resilience

Jakir Hossain, Sucheta Soundarajan, Ahmet Erdem Sarıyüce

Construction and Training of Multi-Associative Graph Networks

Adrian Horzyk, Daniel Bulanda, Janusz A. Starzyk

Skeletal cores and graph resilience

Danylo Honcharov, Ahmet Erdem Sarıyüce, Ricky Laishram, Sucheta Soundarajan

GDM: Dual Mixup for Graph Classification with Limited Supervision

Abdullah Alchihabi, Yuhong Guo

SL-Diff: Two-stage Denoising Diffusion Model for Source Localization in Graph Inverse Problems

Bosong Huang, Weihao Yu, Ruzhong Xie, Jing Xiao, Jin Huang

Sparse Neural Additive Model: Interpretable Deep Learning with Feature Selection via Group Sparsity

Shiyun Xu, Zhiqi Bu, Pratik Chaudhari, Ian J. Barnett

Learning Locally Interpretable Rule Ensemble

Kentaro Kanamori

XAI with Machine Teaching when Humans Are (Not) Informed about the Irrelevant Features

Brigt Arve Toppe Håvardstun, Cèsar Ferri, Jose Hernández-Orallo, Pekka Parviainen, Jan Arne Telle

Generating robust counterfactual explanations

Victor Guyomard, Françoise Fessant, Thomas Guyet, Tassadit Bouadi, Alexandre Termier

Neural models for Factual Inconsistency Classification with Explanations

Tathagata Raha, Mukund Choudhary, Abhinav Menon, Harshit Gupta, K V Aditya Srivatsa, Manish Gupta, Vasudeva Varma

iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams

Maximilian Muschalik, Fabian Fumagalli, Barbara Hammer, Eyke Hüllermeier

Interpretation Attacks and Defenses on Predictive Models using Electronic Health Records

Fereshteh Razmi, Jian Lou, Yuan Hong, Li Xiong

An Empirical Evaluation of the Rashomon Effect in Explainable Machine Learning

Sebastian Müller, Vanessa Toborek, Katharina Beckh, Matthias Jakobs, Christian Bauckhage, Pascal Welke

Interpretable Regional Descriptors: Hyperbox-Based Local Explanations

Susanne Dandl, Giuseppe Casalicchio, Bernd Bischl, Ludwig Bothmann

TIGTEC : Token Importance Guided TExt Counterfactuals

Milan Bhan, Jean-Noël Vittaut, Nicolas Chesneau, Marie-Jeanne Lesot

Towards Few-shot Inductive Link Prediction on Knowledge Graphs: A Relational Anonymous Walk-guided Neural Process Approach

Zicheng Zhao, Linhao Luo, Shirui Pan, Quoc Viet Hung Nguyen, Chen Gong

Comparing Apples and Oranges? On the Evaluation of Methods for Temporal Knowledge Graph Forecasting

Julia Gastinger, Timo Sztyler, Lokesh Sharma, Anett Schuelke, Heiner Stuckenschmidt

Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs using Confidence-Augmented Reinforcement Learning

Zifeng Ding, Jingpei Wu, Zongyue Li, Yunpu Ma, Volker Tresp

Clifford Embeddings -- A Generalized Approach for Embedding in Normed Algebras

Caglar Demir, Axel-Cyrille Ngonga Ngomo

Exploring Word-Sememe Graph-Centric Chinese Antonym Detection

Zhaobo Zhang, Pingpeng Yuan, Hai Jin

Distinct Geometrical Representations for Temporal and Relational Structures in Knowledge Graphs

Bowen Song, Chengjin Xu, Kossi Amouzouvi, Maocai Wang, Jens Lehmann, Sahar Vahdati

LitCQD: Multi-Hop Reasoning in Incomplete Knowledge Graphs with Numeric Literals

Caglar Demir, Michel Wiebesiek, Renzhong Lu, Axel-Cyrille Ngonga Ngomo, Stefan Heindorf

Cross Model Parallelism for Faster Bidirectional Training of Large Convolutional Neural Networks

An Xu, Yang Bai

Distributed Adaptive Learning with Divisible Communication

An Xu, Yang Bai

PROPAGATE: a seed propagation framework to compute Distance-based metrics on Very Large Graphs

Giambattista Amati, Antonio Cruciani, Daniele Pasquini, Paola Vocca, Simone Angelini

Towards Memory-Efficient Training for Extremely Large Output Spaces -- Learning with 670k Labels on a Single Commodity GPU

Erik Schultheis, Rohit Babbar

Unsupervised Deep Cross-Language Entity Alignment

Chuanyu Jiang, Yiming Qian, Lijun Chen, Yang Gu, Xia Xie

Corpus-Based Relation Extraction by Identifying and Refining Relation Patterns

Sizhe Zhou, Suyu Ge, Jiaming Shen, Jiawei Han

Learning to Play Text-based Adventure Games with Maximum Entropy Reinforcement Learning

Weichen Li, Rati Devidze, Sophie Fellenz

SALAS: Supervised Aspect Learning Improves Abstractive Multi-Document Summarization through Aspect Information Loss

Haotian Chen, Han Zhang, Houjing Guo, Shuchang Yi, Bingsheng Chen, Xiangdong Zhou

KL Regularized Normalization Framework for Low Resource Tasks

Neeraj Kumar, Ankur Narang, Brejesh Lall

Improving Autoregressive NLP Tasks via Modular Linearized Attention

Victor Agostinelli, Lizhong Chen

Enhancing Table Retrieval with Dual Graph Representations

Tianyun Liu, Xinghua Zhang, Zhenyu Zhang, Yubin Wang, Quangang Li, Shuai Zhang, Tingwen Liu

A Few Good Sentences: Content Selection For Abstractive Text Summarization

Vivek Srivastava, Savita Bhat, Niranjan Pedanekar

Encouraging Sparsity in Neural Topic Modeling with Non-Mean-Field Inference

Jiayao Chen, Rui Wang, Jueying He, Mark Junjie Li

The Metric is the Message: Benchmarking challenges for neural symbolic regression

Amanda Bertschinger, Q. Tyrell Davis, James Bagrow, Joshua Bongard

Symbolic Regression via Control Variable Genetic Programming

Nan Jiang, Yexiang Xue

Neural Class Expression Synthesis in ALCHIQ(D)

N’Dah Jean Kouagou, Stefan Heindorf, Caglar Demir, Axel-Cyrille Ngonga Ngomo

Deep Explainable Relational Reinforcement Learning: A Neuro-Symbolic Approach

Rishi Hazra, Luc De Raedt

ReOnto: A Neuro-Symbolic Approach for Biomedical Relation Extraction

Monika Jain, Kuldeep Singh, Raghava Mutharaju

NKFAC: A Fast and Stable KFAC Optimizer for Deep Neural Networks

Ying Sun, Hongwei Yong, Lei Zhang

Exact Combinatorial Optimization with Temporo-Attentional Graph Neural Networks

Mehdi Seyfi, Amin Banitalebi-Dehkordi, Zirui Zhou, Yong Zhang

Improved Multi-Label Propagation for Small Data with Multi-Objective Optimization

Khadija Musayeva, Mickaël Binois

Fast Convergence of Random Reshuffling under Over-Parameterization and the Polyak-Łojasiewicz Condition

Chen Fan, Christos Thrampoulidis, Mark Schmidt

A scalable solution for the extended multi-channel facility location problem

Etika Agarwal, Karthik S. Gurumoorthy, Ankit Ajit Jain, Shantala Manchenahally

Online State Exploration: Competitive Worst Case and Learning-Augmented Algorithms

Sungjin Im, Benjamin Moseley, Chenyang Xu, Ruilong Zhang

Learning Graphical Factor Models with Riemannian Optimization

Alexandre Hippert-Ferrer, Florent Bouchard, Ammar Mian, Titouan Vayer, Arnaud Breloy

ConGCN: Factorized Graph Convolutional Networks for Consensus Recommendation

Boyu Li, Ting Guo, Xingquan Zhu, Yang Wang, Fang Chen

Long-tail Augmented Graph Contrastive Learning for Recommendation

Qian Zhao, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou

News Recommendation via Jointly Modeling Event Matching and Style Matching

Pengyu Zhao, Shoujin Wang, Wenpeng Lu, Xueping Peng, Weiyu Zhang, Chaoqun Zheng, Yonggang Huang

BalancedQR : A framework for balanced query recommendation

Harshit Mishra, Sucheta Soundarajan

On the Distributional Convergence of Temporal Difference Learning

Jie Dai, Xuguang Chen

Offline Reinforcement Learning with On-Policy Q-Function Regularization

Laixi Shi, Robert Dadashi, Yuejie Chi, Pablo Samuel Castro, Matthieu Geist

Alpha Elimination: Using Deep Reinforcement Learning to Reduce Fill-In during Sparse Matrix Decomposition

Arpan Dasgupta, Pawan Kumar

Learning Hierarchical Planning-Based Policies from Offline Data

Jan Wöhlke, Felix Schmitt, Herke van Hoof

Stepsize Learning for Policy Gradient Methods in Contextual Markov Decision Processes

Luca Sabbioni, Francesco Corda, Marcello Restelli

Invariant Lipschitz Bandits: A Side Observation Approach

Nam Phuong Tran, Long Tran-Thanh

Filtered Observations for Model-based Multi-agent Reinforcement Learning

Linghui Meng, Xuantang Xiong, Yifan Zang, Xi Zhang, Guoqi Li, Dengpeng Xing, Bo Xu

Unsupervised Salient Patch Selection for Data-Efficient Reinforcement Learning

Zhaohui Jiang, Paul Weng

Eigensubspace of Temporal-Difference Dynamics and How It Improves Value Approximation in Reinforcement Learning

Qiang He, Tianyi Zhou, Meng Fang, Setareh Maghsudi

Learning Disentangled Discrete Representations

David Friede, Christian Reimers, Heiner Stuckenschmidt, Mathias Niepert

Boosting Object Representation Learning via Motion and Object Continuity

Quentin Delfosse, Wolfgang Stammer, Thomas Rothenbächer, Dwarak Vittal, Kristian Kersting

Learning Geometric Representations of Objects via Interaction

Alfredo Reichlin, Giovanni Luca Marchetti, Hang Yin, Anastasiia Varava, Danica Kragic

On the good behaviour of Extremely Randomized Trees in Random Forest-distance computation

Manuele Bicego, Ferdinando Cicalese

Hypernetworks build Implicit Neural Representations of Sounds

Filip Szatkowski, Karol J. Piczak, Przemysław Spurek, Jacek Tabor, Tomasz Trzciński

Contrastive Representation through Angle and Distance based Loss for Partial Label Learning

Priyanka Chudasama, Tushar Kadam, Rajat Patel, Aakarsh Malhotra, Manoj Mangam

Equivariant Representation Learning in the Presence of Stabilizers

Luis Armando Pérez Rey, Giovanni Luca Marchetti, Danica Kragic, Dmitri Jarnikov, Mike Holenderski

Towards Understanding the Mechanism of Contrastive Learning via Similarity Structure: A Theoretical Analysis

Hiroki Waida, Yuichiro Wada, Léo Andéol, Takumi Nakagawa, Yuhui Zhang, Takafumi Kanamori

BipNRL : Mutual Information Maximization on Bipartite Graphs for Node Representation Learning

Pranav Poduval, Gaurav Oberoi, Sangam Verma, Ayush Agarwal, Karamjit Singh, Siddhartha Asthana

MMA: Multi-Metric-Autoencoder for Analyzing High-Dimensional and Incomplete Data

Cheng Liang, Di Wu, Yi He, Teng Huang, Zhong Chen, Xin Luo

Exploring and Exploiting Data-Free Model Stealing

Chi Hong, Jiyue Huang, Robert Birke, Lydia Y. Chen

Exploring the Training Robustness of Distributional Reinforcement Learning against Noisy State Observations

Ke Sun, Yingnan Zhao, Shangling Jui, Linglong Kong

Overcoming the Limitations of Localization Uncertainty: Efficient & Exact Non-Linear Post-Processing and Calibration

Moussa Kassem Sbeyti, Michelle Karg, Christian Wirth, Azarm Nowzad, Sahin Albayrak

Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching

Bastien Dussap, Gilles Blanchard, Badr-Eddine Chérief-Abdellatif

Robust Classification of High-Dimensional Data using Data-Adaptive Energy Distance

Jyotishka Ray Choudhury, Aytijhya Saha, Sarbojit Roy, Subhajit Dutta

DualMatch: Robust Semi-Supervised Learning with Dual-Level Interaction

Cong Wang, Xiaofeng Cao, Lanzhe Guo, Zenglin Shi

Detecting Evasion Attacks in Deployed Tree Ensembles

Laurens Devos, Lorenzo Perini, Wannes Meert, Jesse Davis

Deep Imbalanced Time-series Forecasting via Local Discrepancy Density

Junwoo Park, Jungsoo Lee, Youngin Cho, Woncheol Shin, Dongmin Kim, Jaegul Choo, Edward Choi

Online Deep Hybrid Ensemble Learning for Time Series Forecasting

Amal Saadallah, Matthias Jakobs

Sparse Transformer Hawkes Process for Long Event Sequences

Zhuoqun Li, Mingxuan Sun

Adacket: ADAptive Convolutional KErnel Transform for Multivariate Time Series Classification

Junru Zhang, Lang Feng, Haowen Zhang, Yuhan Wu, Yabo Dong

Efficient Adaptive Spatial-Temporal Attention Network for Traffic Flow Forecasting

Hongyang Su, Xiaolong Wang, Qingcai Chen, Yang Qin

Estimating Dynamic Time Warping Distance Between Time Series with Missing Data

Aras Yurtman, Jonas Soenen, Wannes Meert, Hendrik Blockeel

Uncovering Multivariate Structural Dependency for Analyzing Irregularly Sampled Time Series

Zhen Wang, Ting Jiang, Zenghui Xu, Jianliang Gao, Ou Wu, Ke Yan, Ji Zhang

Weighted Multivariate Mean Reversion for Online Portfolio Selection

Boqian Wu, Benmeng Lyu, Jiawen Gu

H2-Nets: Hyper-Hodge Convolutional Neural Networks for Time-series Forecasting

Yuzhou Chen, Tian Jiang, Yulia R. Gel

Overcoming Catastrophic Forgetting for Fine-tuning Pre-trained GANs

Zeren Zhang, Xingjian Li, Tao Hong, Tianyang Wang, Jinwen Ma, Haoyi Xiong, Cheng-Zhong Xu

Unsupervised Domain Adaptation via Bidirectional Cross-Attention Transformer

Xiyu Wang, Pengxin Guo, Yu Zhang

Multiple-Source Adaptation using Variational Rényi Bound Optimization

Dana Zalman (Oshri), Shai Fine

Match-And-Deform: Time Series Domain Adaptation through Optimal Transport and Temporal Alignment

François Painblanc, Laetitia Chapel, Nicolas Courty, Chloé Friguet, Charlotte Pelletier, Romain Tavenard

Bi-Tuning: Efficient Transfer from Pre-Trained Models

Jincheng Zhong, Haoyu Ma, Ximei Wang, Zhi Kou, Mingsheng Long

Generality-training of a Classifier for Improved Calibration in Unseen Contexts

Bhawani Shankar Leelar, Meelis Kull

Informed Priors for Knowledge Integration in Trajectory Prediction

Christian Schlauch, Christian Wirth, Nadja Klein

CAENet: Efficient Multi-task Learning for Joint Semantic Segmentation and Depth Estimation

Luxi Wang, Yingming Li

Click-aware Structure Transfer with Sample Weight Assignment for Post-Click Conversion Rate Estimation

Kai Ouyang, Wenhao Zheng, Chen Tang, Xuanji Xiao, Hai-Tao Zheng

Constrained-HIDA: Heterogeneous Image Domain Adaptation Guided by Constraints

Mihailo Obrenović, Thomas Lampert, Miloš Ivanović, Pierre Gançarski

Rectifying Bias in Ordinal Observational Data using Unimodal Label Smoothing

Stefan Haas, Eyke Hüllermeier

Class-Conditional Label Noise in Astroparticle Physics

Mirko Bunse, Lukas Pfahler

A Baseline Generative Probabilistic Model for Weakly Supervised Learning

Georgios Papadopoulos, Fran Silavong, Sean Moran

DyCOD - Determining Cash on Delivery Limits for Real-time E-commerce Transactions via Constrained Optimisation Modelling

Akash Deep, Sri Charan Kattamuru, Meghana Negi, Jose Mathew, Jairaj Sathyanarayana

Pattern Mining for Anomaly Detection in Graphs: Application to Fraud in Public Procurement

Lucas Potin, Rosa Figueiredo, Vincent Labatut, Christine Largeron

Aspect-based Complaint and Cause Detection: A Multimodal Generative Framework with External Knowledge Infusion

Raghav Jain, Apoorv Verma, Apoorva Singh, Vivek Gangwar, Sriparna Saha

Sequence-Graph Fusion Neural Network for User Mobile App Behavior Prediction

Yizhuo Wang, Renhe Jiang, Hangchen Liu, Du Yin, Xuan Song

DegUIL: Degree-aware Graph Neural Networks for Long-tailed User Identity Linkage

Meixiu Long, Siyuan Chen, Xin Du, Jiahai Wang

Ex-ThaiHate: A Generative Multi-task Framework for Sentiment and Emotion Aware Hate Speech Detection with Explanation in Thai

Krishanu Maity, Shaubhik Bhattacharya, Salisa Phosit, Sawarod Kongsamlit, Sriparna Saha, Kitsuchart Pasupa

Deep Serial Number: Computational Watermark for DNN Intellectual Property Protection

Ruixiang Tang, Mengnan Du, Xia Hu

How Early can we Detect? Detecting Misinformation on Social Media Using User Profiling and Network Characteristics

Shreya Ghosh, Prasenjit Mitra

Boosting the performance of Deployable Timestamped Directed GNNs via Time-Relaxed Sampling

Arihant Jain, Gundeep Arora, Anoop Saladi

Semi-Supervised Social Bot Detection with Initial Residual Relation Attention Networks

Ming Zhou, Wenzheng Feng, Yifan Zhu, Dan Zhang, Yuxiao Dong, Jie Tang

On Calibration of Mathematical Finance Models by Hypernetworks

Yongxin Yang, Timothy M. Hospedales

PU GNN: Chargeback Fraud Detection in P2E MMORPGs via Graph Attention Networks with Imbalanced PU Labels

Jiho Choi, Junghoon Park, Woocheol Kim, Jin-Hyeok Park, Yumin Suh, Minchang Sung

BCAD: An Interpretable Anomaly Transaction Detection System based on Behavior Consistency

Jun Hu, Xu Min, Xiaolu Zhang, Chilin Fu, Weichang Wu, Jun Zhou

Advancing Fraud Detection Systems through Online Learning

Tommaso Paladini, Martino Bernasconi de Luca, Michele Carminati, Mario Polino, Francesco Trovò, Stefano Zanero

Continual Model-based Reinforcement Learning for Data Efficient Wireless Network Optimisation

Cengis Hasan, David Lynch, Alexandros Agapitos, Alberto Castagna, Giorgio Cruciata, Hao Wang, Aleksandar Milenovic

An Examination of Wearable Sensors and Video Data Capture for Human Exercise Classification

Ashish Singh, Antonio Bevilacqua, Timilehin B Aderinola , Thach Le Nguyen, Darragh Whelan, Martin O'Reilly, Brian Caulfield, Georgiana Ifrim

Context-Aware Deep Time-Series Decomposition for Anomaly Detection in Businesses

Youngeun Nam, Patara Trirat, Taeyoon Kim, Youngseop Lee, Jae-Gil Lee

F-3DNet: Leveraging Inner Order of Point Clouds for 3D Object Detection

Ying Chen, Rui Liu, Zhihui Li, Andy Song

Constraint-Based Parameterization and Disentanglement of Aerodynamic Shapes using Deep Generative Models

Asmita Bhat, Nooshin Haji-Ghassemi, Deepak Nagaraj, Sophie Fellenz

Deep Learning for real-time neural decoding of grasp

Paolo Viviani, Ilaria Gesmundo, Elios Ghinato, Andres Agudelo-Toro, Chiara Vercellino, Giacomo Vitali, Letizia Bergamasco, Alberto Scionti, Marco Ghislieri, Valentina Agostini, Olivier Terzo, Hansjörg Scherberger

MCTN: A Multi-Channel Temporal Network for Wearable Fall Prediction

Jiawei Liu, Xiaohu Li, Guorui Liao, Shu Wang, Li Liu

Target-aware Molecular Graph Generation

Cheng Tan, Zhangyang Gao, Stan Z. Li

Contrastive Learning-based Imputation-Prediction Networks for In-hospital Mortality Risk Modeling using EHRs

Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Flora D. Salim, Antonio Jimeno Yepes

Weak Supervision and Clustering-based Sample Selection for Clinical Named Entity Recognition

Wei Sun, Shaoxiong Ji, Tuulia Denti, Hans Moen, Oleg Kerro, Antti Rannikko, Pekka Marttinen, Miika Koskinen

Fairness-Aware Processing Techniques in Survival Analysis: Promoting Equitable Predictions

Zhouting Zhao, Tin Lok James Ng

BeeTLe: A Framework for Linear B-Cell Epitope Prediction and Classification

Xiao Yuan

Ordinal Regression for Difficulty Prediction of StepMania Levels

Billy Joe Franks, Benjamin Dinkelmann, Marius Kloft, Sophie Fellenz

Double Machine Learning at Scale to Predict Causal Impact of Customer Actions

Sushant More, Priya Kotwal, Sujith Chappidi, Dinesh Mandalapu, Chris Khawand

Graph-Enhanced Multi-Activity Knowledge Tracing

Siqian Zhao, Shaghayegh Sahebi

Knowledge Distillation with Graph Neural Networks for Epileptic Seizure Detection

Qinyue Zheng, Arun Venkitaraman, Simona Petravic, Pascal Frossard

OptMSM: Optimizing Multi-Scenario Modeling for Click-Through Rate Prediction

Xing Tang, Yang Qiao, Yuwen Fu, Fuyuan Lyu, Dugang Liu, Xiuqiang He

PDF-VQA: A New Dataset for Real-World VQA on PDF Documents

Yihao Ding, Siwen Luo, Hyunsuk Chung, Soyeon Caren Han

Future Augmentation with Self-Distillation in Recommendation

Chong Liu, Ruobing Xie, Xiaoyang Liu, Pinzheng Wang, Rongqin Zheng, Lixin Zhang, Juntao Li, Feng Xia, Leyu Lin

Cooperative Multi-Agent Reinforcement Learning for Inventory Management

Madhav Khirwar, Karthik S. Gurumoorthy, Ankit Ajit Jain, Shantala Manchenahally

LtrGCN: Large-Scale Graph Convolutional Networks-based Learning to Rank for Web Search

Yuchen Li, Haoyi Xiong, Linghe Kong, Shuaiqiang Wang, Zeyi Sun, Hongyang Chen, Guihai Chen, Dawei Yin

Prototype-Guided Counterfactual Explanations via Variational Auto-Encoder for Recommendation

Ming He, Jiwen Wang, Boyang An, Hao Wen

PCDF: A Parallel-Computing Distributed Framework for Sponsored Search Advertising Serving

Han Xu, Hao Qi, Yaokun Wang, Pei Wang, Guowei Zhang, Congcong Liu, Junsheng Jin, Xiwei Zhao, Zhangang Lin, Jinghe Hu, Jingping Shao

A Vlogger-augmented Graph Neural Network Model for Micro-video Recommendation

Weijiang Lai, Beihong Jin, Beibei Li, Yiyuan Zheng, Rui Zhao

Continually learning out-of-distribution spatiotemporal data for robust energy forecasting

Arian Prabowo, Kaixuan Chen, Hao Xue, Subbu Sethuvenkatraman, Flora D. Salim

Counterfactual Explanations for Remote Sensing Time Series Data: an Application to Land Cover Classification

Cassio F. Dantas, Thalita F. Drumond, Diego Marcos, Dino Ienco

Cloud Imputation for Multi-Sensor Remote Sensing Imagery with Style Transfer

Yifan Zhao, Xian Yang, Ranga Raju Vatsavai

Comprehensive Transformer-based Model Architecture for Real-World Storm Prediction

Fudong Lin, Xu Yuan, Yihe Zhang, Purushottam Sigdel, Li Chen, Lu Peng, Nian-Feng Tzeng

Explaining Full-disk Deep Learning Model for Solar Flare Prediction using Attribution Methods

Chetraj Pandey, Rafal Angryk, Berkay Aydin

Deep Spatiotemporal Clustering: A Temporal Clustering Approach for Multi-dimensional Climate Data

Omar Faruque, Francis Ndikum Nji, Mostafa Cham, Rohan Mandar Salvi, Xue Zheng, Jianwu Wang

Circle Attention: Forecasting Network Traffic by Learning Interpretable Spatial Relationships from Intersecting Circles

Espen Haugsdal, Sara Malacarne, Massimiliano Ruocco

Pre-training Contextual Location Embeddings in Personal Trajectories via Efficient Hierarchical Location Representations

Chung Park, Taesan Kim, Junui Hong, Minsung Choi, Jaegul Choo

Leveraging Queue Length and Attention Mechanisms for Enhanced Traffic Signal Control Optimization

Liang Zhang, Shubin Xie, Jianming Deng

PICT: Precision-enhanced Road Intersection Recognition using Cycling Trajectories

Wenyu Wu, Wenyi Shen, Jiali Mao, Lisheng Zhao, Shaosheng Cao, Aoying Zhou, Lin Zhou

FDTI: Fine-grained Deep Traffic Inference with Roadnet-enriched Graph

Zhanyu Liu, Chumeng Liang, Guanjie Zheng, Hua Wei

RulEth: Genetic Programming-Driven Derivation of Security Rules for Automotive Ethernet

Felix Gail, Roland Rieke, Florian Fenzl

Spatial-Temporal Graph Sandwich Transformer for Traffic Flow Forecasting

Yujie Fan, Chin-Chia Michael Yeh, Huiyuan Chen, Liang Wang, Zhongfang Zhuang, Junpeng Wang, Xin Dai, Yan Zheng, Wei Zhang

Data-Driven Explainable Artificial Intelligence for Energy Efficiency in Short-Sea Shipping

Mohamed Abuella, M. Amine Atoui, Slawomir Nowaczyk, Simon Johansson, Ethan Faghani

Multivariate Time-Series Anomaly Detection with Temporal Self-Supervision and Graphs: Application to Vehicle Failure Prediction

Hadi Hojjati, Mohammadreza Sadeghi, Narges Armanfard

Predictive Maintenance, Adversarial Autoencoders and Explainability

Miguel E. P. Silva, Bruno Veloso, João Gama

TDCM: Transport Destination Calibrating based on Multi-task Learning

Tao Wu, Kaixuan Zhu, Jiali Mao, Miaomiao Yang, Aoying Zhou

An Interactive Interface for Novel Class Discovery in Tabular Data

Colin Troisemaine, Joachim Flocon-Cholet, Stéphane Gosselin, Alexandre Reiffers-Masson, Sandrine Vaton, Vincent Lemaire

marl-jax: Multi-agent Reinforcement Leaning framework for Social Generalization

Kinal Mehta, Anuj Mahajan, Pawan Kumar

Temporal Graph based Incident Analysis System for Internet of Things

Peng Yuan, Lu-An Tang, Haifeng Chen, David S. Chang, Moto Sato

MEMENTO: Facilitating Effortless, Efficient, and Reliable ML Experiments

Zac Pullar-Strecker, Xinglong Chang, Liam Brydon, Ioannis Ziogas, Katharina Dost, Jörg Wicker

CAD2Graph: Automated Extraction of Spatial Graphs from Architectural Drawings

Pratik Maitra, Masahiro Kiji, Talal Riaz, Philip M. Polgreen, Alberto M. Segre, Sriram V. Pemmaraju, Bijaya Adhikari

PIQARD system for experimenting and testing Language Models with prompting strategies

Marcin Korcz, Dawid Plaskowski, Mateusz Politycki, Jerzy Stefanowski, Alex Terentowicz

Using Multiple RDF Knowledge Graphs for Enriching ChatGPT Responses

Michalis Mountantonakis, Yannis Tzitzikas

Interactive visualization of counterfactual explanations for tabular data

Victor Guyomard, Françoise Fessant, Thomas Guyet, Tassadit Bouadi, Alexandre Termier

χiplot: web-first visualisation platform for multidimensional data

Akihiro Tanaka, Juniper Tyree, Anton Björklund, Jarmo Mäkelä, Kai Puolamäki

Lumos in the Night Sky: AI-enabled Visual Tool for Exploring Night-Time Light Patterns

Jakob Hederich, Shreya Ghosh, Zeyu He, Prasenjit Mitra

Automated Financial Analysis Using GPT-4

Sander Noels, Adriaan Merlevede, Andrew Fecheyr, Maarten Vanhalst, Nick Meerlaen, Sébastien Viaene, Tijl De Bie

Gait-based biometrics system

Aleksander Sawicki, Khalid Saeed

The Good, The Bad And The Average: Benchmarking of Reconstruction Based Multivariate Time Series Anomaly Detection

Arn Baudzus, Bin Li, Adnane Jadid, Emmanuel Müller

Inclusively: an AI-based Assistant for Inclusive Writing

Moreno La Quatra, Salvatore Greco, Luca Cagliero, Tania Cerquitelli

A Risk Prediction Framework to Optimize Remote Patient Monitoring Following Cardiothoracic Surgery

Ricardo Santos, Bruno Ribeiro, Pedro Dias, Isabel Curioso, Pedro Madeira, Federico Guede-Fernández, Jorge Santos, Pedro Coelho, Inês Sousa, Ana Londral

MWPRanker: An Expression Similarity Based Math Word Problem Retriever

Mayank Goel, Venktesh V, Vikram Goyal