Preprints 2021

Routine Bandits: Minimizing Regret on Recurring Problems

Hassan Saber, Léo Saci, Odalric-Ambrym Maillard, Audrey Durand

Conservative Online Convex Optimization

Martino Bernasconi de Luca, Edoardo Vittori, Francesco Trovò, Marcello Restelli

Knowledge Infused Policy Gradients with Upper Confidence Bound for Relational Bandits

Kaushik Roy, Qi Zhang, Manas Gaur, Amit Sheth

Exploiting History Data for Nonstationary Multi-armed Bandit

Gerlando Re, Fabio Chiusano, Francesco Trovò, Diego Carrera, Giacomo Boracchi, Marcello Restelli

High-probability Kernel Alignment Regret Bounds for Online Kernel Selection

Shizhong Liao, Junfan Li

Periodic Intra-Ensemble Knowledge Distillation for Reinforcement Learning

Zhang-Wei~Hong, Prabhat~Nagarajan, Guilherme~Maeda

Learning to Build High-fidelity and Robust Environment Models

Weinan Zhang, Zhengyu Yang , Jian Shen, Minghuan Liu , Yimin Huang, Xing Zhang, Ruiming Tang, Zhenguo Li

Ensemble and Auxiliary Tasks for Data-Efficient Deep Reinforcement Learning

Muhammad Rizki Maulana, Wee Sun Lee

Multi-Agent Imitation Learning with Copulas

Hongwei Wang, Lantao Yu, Zhangjie Cao, Stefano Ermon

CMIX: Deep Multi-agent Reinforcement Learning with Peak and Average Constraints

Chenyi Liu, Nan Geng\and Vaneet Aggarwal, Tian Lan, Yuan Yang, Mingwei Xu

Model-based Offline Policy Optimization with Distribution Correcting Regularization

Jian Shen, Mingcheng Chen, Zhicheng Zhang, Zhengyu Yang, \\ Weinan Zhang , Yong Yu

Disagreement Options: Task Adaptation Through Temporally Extended Actions

Matthias Hutsebaut-Buysse, Tom De Schepper, Kevin Mets, Steven Latr\'e

Deep Adaptive Multi-Intention Inverse Reinforcement Learning

Ariyan Bighashdel, Panagiotis Meletis, Pavol Jancura, Gijs Dubbelman

Unsupervised Task Clustering for\\ Multi-Task Reinforcement Learning

Johannes Ackermann, Oliver Richter, Roger~Wattenhofer

Deep Model Compression Via Two-Stage Deep Reinforcement Learning

Huixin Zhan, Wei-Ming Lin, Yongcan Cao

Dropout's Dream Land: Generalization from Learned Simulators to Reality

Zac Wellmer, James T. Kwok

Goal Modelling for Deep Reinforcement Learning Agents

Jonathan Leung , Zhiqi Shen, Zhiwei Zeng, Chunyan Miao

Deviation-based Marked Temporal Point Process for Marker Prediction

Anand Vir Singh Chauhan, Shivshankar Reddy, Maneet Singh, Karamjit Singh, Tanmoy Bhowmik

Deep Structural Point Process for Learning Temporal Interaction Networks

Jiangxia Cao, Xixun Lin, Xin Cong, Shu Guo\and Hengzhu Tang, Tingwen Liu, Bin Wang

Holistic Prediction for Public Transport Crowd Flows: A Spatio Dynamic Graph Network Approach

Bingjie He, Shukai Li, Chen Zhang, Baihua Zheng, Fugee Tsung

Reservoir Pattern Sampling in Data Streams

Arnaud Giacometti , Arnaud Soulet

Discovering proper neighbors to improve session-based recommendation

Lin Liu, Li Wang, Tao Lian

Continuous-time Markov-switching GARCH Process with Robust State Path Identification and Volatility Estimation

Yinan Li , Fang LiuYinan Li

Dynamic Heterogeneous Graph Embedding via Heterogeneous Hawkes Process

Yugang Ji, Tianrui Jia , Yuan Fang, Chuan Shi

Explainable Online Deep Neural Network Selection using Adaptive Saliency Maps for Time Series Forecasting

Amal Saadallah, Matthias Jakobs, Katharina Morik

Change Detection in Multivariate Datastreams Controlling False Alarms

Luca Frittoli, Diego Carrera , Giacomo Boracchi

Approximation algorithms for confidence bands for time series

Nikolaj Tatti

A Mixed Noise and Constraint-based Approach to Causal Inference in Time Series

Karim Assaad , Emilie Devijver , Eric Gaussier, Ali Ait-Bachir

Estimating the Electrical Power Output of Industrial Devices with End-to-End Time-Series Classification in the Presence of Label Noise

Andrea~Castellani , Sebastian~Schmitt, Barbara~Hammer

Multi-task Learning Curve Forecasting Across Hyperparameter Configurations and Datasets

Shayan Jawed, Hadi Jomaa, Lars Schmidt-Thieme, Josif Grabocka

Streaming Decision Trees for Lifelong Learning

Lukasz Korycki, Bartosz Krawczyk

Unifying Domain Adaptation and Domain Generalization for Transfer among Racial Groups across Medical Systems

Farzaneh Khoshnevisan, Min Chi

Deep Multi-Task Augmented Feature Learning via Hierarchical Graph Neural Network

Pengxin Guo, Chang Deng, Linjie Xu, Xiaonan Huang, Yu Zhang

Bridging Few-Shot Learning and Adaptation: New Challenges of Support-Query Shift

Etienne Bennequin , Victor Bouvier, Myriam Tami , Antoine Toubhans , C\'eline Hudelot

Source Hypothesis Transfer for Zero-Shot Domain Adaptation

Tomoya Sakai

FedPHP: Federated Personalization with Inherited Private Models

Xin-Chun Li, De-Chuan Zhan, Yunfeng Shao ,

Rumour Detection via Zero-shot Cross-lingual Transfer Learning

Lin Tian, Xiuzhen Zhang , Jey Han Lau

Continual Learning with Dual Regularizations

Xuejun Han, Yuhong Guo

EARLIN: Early Out-of-Distribution Detection for Resource-efficient Collaborative Inference

Sumaiya Tabassum Nimi, Md Adnan Arefeen, Md Yusuf Sarwar Uddin, Yugyung Lee

LSMI-Sinkhorn: Semi-supervised Mutual Information Estimation with Optimal Transport

Yanbin Liu, Makoto Yamada, Yao-Hung Hubert Tsai, Tam Le, Ruslan Salakhutdinov, Yi Yang

Spatial Contrastive Learning for Few-Shot Classification

Yassine Ouali, Céline Hudelot, Myriam Tami

Ensemble of Local Decision Trees for Anomaly Detection in Mixed Data

Sunil Aryal, Jonathan R. Wells

Optimal Teaching Curricula with Compositional Simplicity Priors

Manuel Garcia-Piqueras , José~Hernàndez-Orallo

FedDNA: Federated Learning with Decoupled Normalization-Layer Aggregation for Non-IID Data

Jian-Hui Duan, Wenzhong Li, Sanglu Lu

The Curious Case of Convex Neural Networks

Sarath Sivaprasad, Ankur Singh, Naresh Manwani,, Vineet Gandhi

UCSL : A Machine Learning Expectation-Maximization framework for Unsupervised Clustering driven by Supervised Learning

Robin Louiset , Pietro Gori, Benoit Dufumier , Josselin Houenou , Antoine Grigis , Edouard Duchesnay

Efficient and Less Centralized Federated Learning

Li Chou, Zichang Liu, Zhuang Wang , Anshumali Shrivastava

Topological Anomaly Detection in Dynamic Multilayer Blockchain Networks

Dorcas Ofori-Boateng, Ignacio Segovia Dominguez, Cuneyt Akcora, Murat Kantarcioglu, Yulia Gel

Non-Exhaustive Learning Using Gaussian Mixture Generative Adversarial Networks

Jun Zhuang , Mohammad Al Hasan

Unsupervised Learning of Joint Embeddings for Node Representation and Community Detection

Rayyan Ahmad Khan, Muhammad Umer Anwaar, Omran Kaddah, Zhiwei Han, Martin Kleinsteuber

GraphAnoGAN: Detecting Anomalous Snapshots from Attributed Graphs

Siddharth Bhatia , Yiwei Wang, Bryan Hooi, Tanmoy Chakraborty

The Bures Metric for Generative Adversarial Networks

Hannes De Meulemeester , Joachim Schreurs, Micha\"el Fanuel, Bart De Moor, Johan A.K. Suykens

Generative Max-Mahalanobis Classifiers for Image Classification, Generation and More

Xiulong Yang, Hui Ye, Yang Ye, Xiang Li, Shihao Ji

Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty

Judith B\"utepage , Lucas Maystre, Mounia Lalmas

Variational Hyper-Encoding Networks

Phuoc Nguyen , Truyen Tran, Sunil Gupta , Santu Rana, Hieu-Chi Dam , Svetha Venkatesh

Principled Interpolation in Normalizing Flows

Samuel~G.~Fadel, Sebastian~Mair, Ricardo~da~S.~Torres, Ulf~Brefeld

CycleGAN through the lens of (Dynamical) Optimal Transport

Emmanuel de Bézenac, Ibrahim Ayed, Patrick Gallinari

Decoupling Sparsity and Smoothness in Dirichlet Belief Networks

Yaqiong Li, Xuhui Fan, Ling Chen, Bin Li, Scott A. Sisson

Self-Bounding Majority Vote Learning Algorithms by the Direct Minimization of a Tight PAC-Bayesian C-Bound

Paul Viallard, Pascal Germain, Amaury Habrard, Emilie Morvant

Midpoint Regularization: from High Uncertainty Training Labels to Conservative Classification Decisions

Hongyu Guo

Learning Weakly Convex Sets in Metric Spaces

Eike Stadtl\"{a}nder, Tam\'{a}s Horv\'{a}th, Stefan Wrobel

Disparity Between Batches as a Signal for Early Stopping

Mahsa Forouzesh, Patrick Thiran

Learning from Noisy Similar and Dissimilar Data

Soham Dan, Han Bao, Masashi Sugiyama

Knowledge Distillation with Distribution Mismatch

Dang Nguyen, Sunil Gupta, Trong Nguyen, Santu Rana, Phuoc Nguyen, Truyen Tran, Ky Le, Shannon Ryan, Svetha Venkatesh

Certification of Model Robustness in~Active~Class~Selection

Mirko~Bunse, Katharina~Morik

Inter-domain Multi-relational Link Prediction

Luu Huu Phuc, Koh Takeuchi, Seiji Okajima, Arseny Tolmachev, Tomoyoshi Takebayashi, Koji Maruhashi, Hisashi Kashima

GraphSVX: Shapley Value Explanations for Graph Neural Networks

Alexandre Duval, Fragkiskos D. Malliaros

Multi-View Self-Supervised Heterogeneous Graph Embedding

Jianan Zhao, Qianlong Wen, Shiyu Sun , Yanfang Ye , Chuxu Zhang

Semantic-Specific Hierarchical Alignment Network for Heterogeneous Graph Adaptation

YuanXin Zhuang, Chuan Shi, Cheng Yang, Fuzhen Zhuang, Yangqiu Song

The KL-Divergence between a Graph Model and its Fair I-Projection as a Fairness Regularizer

Maarten Buyl, Tijl De Bie

On Generalization of Graph Autoencoders with Adversarial Training

Tianjin Huang, Yulong Pei, Vlado Menkovski, Mykola Pechenizkiy

Inductive Link Prediction with Interactive Structure Learning on Attributed Graph

Shuo Yang, Binbin Hu, Zhiqiang Zhang, Wang Sun, Yang Wang, Jun Zhou, Hongyu Shan, Yuetian Cao, Borui Ye, Yanming Fang, Quan Yu

Representation Learning on Multi-Layered Heterogeneous Network

Delvin Ce Zhang, Hady W. Lauw

Adaptive Node Embedding Propagation for Semi-Supervised Classification

Yuya Ogawa, Seiji Maekawa , Yuya Sasaki , Yasuhiro Fujiwara, Makoto Onizuka

Probing Negative Sampling Strategies to Learn Graph Representations via Unsupervised Contrastive Learning

Shiyi~Chen, Ziao~Wang , Xinni~Zhang , Xiaofeng~Zhang, Dan~Peng

Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs

Shouheng Li, Dongwoo Kim , Qing Wang

Zero-Shot Scene Graph Relation Prediction through Commonsense Knowledge Integration

Xuan Kan, Hejie Cui, Carl Yan

Graph Fraud Detection \\Based on Accessibility Score Distributions

Minji Yoon

Correlation Clustering with Global Weight Bounds

Domenico Mandaglio , Andrea Tagarelli , Francesco Gullo

Modeling Multi-factor and Multi-faceted Preferences over Sequential Networks for Next Item Recommendation

Yingpeng Du, Hongzhi Liu, Zhonghai Wu

PATHATTACK: Attacking Shortest Paths in Complex Networks

Benjamin~A.~Miller, Zohair~Shafi, Wheeler~Ruml, Yevgeniy~Vorobeychik, Tina~Eliassi-Rad, Scott~Alfeld

Embedding Knowledge Graphs Attentive to Positional and Centrality Qualities

Afshin Sadeghi, Diego Collarana, Damien Graux, Jens Lehmann

Reconnaissance for Reinforcement Learning with Safety Constraints

Shin-ichi~Maeda , Hayato~Watahiki, Yi~Ouyang , Shintarou~Okada, Masanori~Koyama , Prabhat~Nagarajan

VeriDL: Integrity Verification of Outsourced Deep Learning Services

Boxiang Dong, Bo Zhangt , Hui (Wendy) Wang

A Unified Batch Selection Policy for Active Metric Learning

Priyadarshini K, Siddhartha Chaudhuri, Vivek Borkar, Subhasis Chaudhuri

Off-Policy Differentiable Logic Reinforcement Learning

Li Zhang , Xin Li, Mingzhong Wang , Andong Tian

Causal Explanation of Convolutional Neural Networks

Hichem Debbi

Interpretable Counterfactual Explanations Guided by Prototypes

Arnaud~Van~Looveren, Janis~Klaise

Finding High-Value Training Data Subset through Differentiable Convex Programming

Soumi Das, Arshdeep Singh , Saptarshi Chatterjee, Suparna Bhattacharya, Sourangshu Bhattacharya

Consequence-aware Sequential Counterfactual Generation

Philip~Naumann, Eirini~Ntoutsi

Studying and Exploiting the Relationship Between Model Accuracy and Explanation Quality

Yunzhe Jia , Eibe Frank, Bernhard Pfahringer, Albert Bifet, Nick Lim

Explainable Multiple Instance Learning with Instance Selection Randomized Trees

Tom\'{a}\v{s} Kom\'{a}rek , Jan Brabec , Petr Somol

Adversarial Representation Learning With Closed-Form Solvers

Bashir~Sadeghi, Lan~Wang, Vishnu~Naresh~Boddeti

Learning Unbiased Representations via R\'enyi Minimization

Vincent Grari, Oualid El Hajouji, Sylvain Lamprier, Marcin Detyniecki

Diversity-aware k-median: Clustering with fair center representation

Suhas Thejaswi, Bruno Ordozgoiti , Aristides Gionis

Sibling Regression for Generalized Linear Models

Shiv Shankar, Daniel Sheldon

Privacy Amplification via Iteration for Shuffled and Online PNSGD

Matteo Sordello , Zhiqi Bu, Jinshuo Dong

Deep Conditional Transformation Models

Philipp F. M. Baumann, Torsten Hothorn\and David Rügamer

Disentanglement and Local Directions of Variance

Alexander Rakowski, Christoph Lippert

Neural Topic Models for Hierarchical Topic Detection and Visualization

Dang Pham, Tuan M. V. Le

Semi-structured Document Annotation using Entity and Relation Types

Arpita Kundu, Subhasish Ghosh , Indrajit Bhattacharya

Learning disentangled representations with the Wasserstein Autoencoder

Benoit Gaujac, Ilya Feige, David Barber

Which Minimizer Does My Neural Network Converge To?

Manuel Nonnenmacher, David Reeb, Ingo Steinwart

Information Interaction Profile of Choice Adoption

Gael Poux-Medard, Julien Velcin, Sabine Loudcher

Joslim: Joint Widths and Weights Optimization for SLIMmable Neural Networks

Ting-Wu Chin, Ari S. Morcos, Diana Marculescu

A Variance Controlled Stochastic Method with Biased Estimation for Faster Non-convex Optimization

Jia Bi, Steve R. Gunn

Very Fast Streaming Submodular Function Maximization

Sebastian Buschjäger, Philipp-Jan Honysz, Lukas Pfahler, Katharina Morik

Dep-L_0: Improving L_0-based Network Sparsification via Dependency Modeling

Yang Li, Shihao Ji

Variance Reduced Stochastic Proximal Algorithm for AUC Maximization

Soham Dan, Dushyant Sahoo

Robust Regression via Model Based Methods

Armin Moharrer, Khashayar Kamran, Edmund Yeh, Stratis Ioannidis

Black-box Optimizer with Stochastic Implicit Natural Gradient

Yueming Lyu, Ivor W. Tsang

More General and Effective Model Compression via an Additive Combination of Compressions

Yerlan Idelbayev, Miguel {\'A} Carreira-Perpi{\~n}{\'a}n

Hyper-Parameter Optimization for Latent Spaces in Dynamic Recommender Systems

Bruno Veloso, Luciano Caroprese, Matthias K\"{o}nig , S\'onia Teixeira , Giuseppe Manco , Holger H. Hoos , Jo\~ao Gama

Bayesian Optimization with a Prior for the Optimum

Artur Souza, Luigi Nardi, Leonardo B. Oliveira, Kunle Olukotun, Marius Lindauer, Frank Hutter

Rank aggregation for non-stationary data streams

Ekhine Irurozki, Aritz Perez , Jesus Lobo, Javier Del Ser

Adaptive Optimizers with Sparse Group Lasso for Neural Networks in CTR Prediction

Yun Yue, Yongchao Liu, Suo Tong, Minghao Li, Zhen Zhang, Chunyang Wen, Huanjun Bao, Lihong Gu, Jinjie Gu, Yixiang Mu

Fast Conditional Network Compression Using Bayesian HyperNetworks

Phuoc Nguyen, Truyen Tran, Ky Le, Sunil Gupta, Santu Rana, Dang Nguyen, Trong Nguyen, Shannon Ryan, Svetha Venkatesh

Active Learning in Gaussian Process State Space Model

Hon Sum Alec Yu , Dingling Yao , Christoph Zimmer , Marc Toussaint, Duy Nguyen-Tuong

Ensembling Shift Detectors: an Extensive Empirical Evaluation

Simona Maggio, Léo Dreyfus-Schmidt

Adaptive Learning Rate and Momentum for Training Deep Neural Networks

Zhiyong Hao, Yixuan Jiang, Huihua Yu , Hsiao-Dong Chiang

Attack Transferability-Robust Multi-label Classification

Zhuo Yang, Yufei Han, Xiangliang Zhang

Differentiable Feature Selection, a Reparameterization Approach

Jérémie Dona' , Patrick Gallinari

ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining

Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, Somesh Jha

Robust Selection Stability Estimation in Correlated Spaces

Victor Hamer, Pierre Dupont

Gradient-based Label Binning in Multi-label Classification

Michael Rapp, Eneldo Loza Menc\'ia, Johannes F\"urnkranz, Eyke H\"ullermeier

Joint Geometric and Topological Analysis of Hierarchical Datasets

Lior Aloni, Omer Bobrowski, Ronen Talmon

Reparameterized Sampling for Generative Adversarial Networks

Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin

Asymptotic Statistical Analysis of Sparse Group LASSO via Approximate Message Passing

Kan Chen, Zhiqi Bu, Shiyun Xu

Sparse Information Filter for Fast Gaussian Process Regression

Lucas Kania, Manuel Sch\"urch, Dario Azzimonti, Alessio Benavoli

Bayesian Crowdsourcing with Constraints

Panagiotis A. Traganitis , Georgios B. Giannakis

VOGUE: Answer Verbalization through Multi-Task Learning

Endri Kacupaj, Shyamnath Premnadh, Kuldeep Singh , Jens Lehmann, Maria Maleshkova

NA-Aware Machine Reading Comprehension for Document-Level Relation Extraction

Zhenyu Zhang, Bowen Yu, Xiaobo Shu, Tingwen Liu

Follow Your Path: a Progressive Method for Knowledge Distillation

Wenxian Shi, Yuxuan Song, Hao Zhou, Bohan Li, Lei Li

TaxoRef: Embeddings Evaluation for AI-driven Taxonomy Refinement

Lorenzo Malandri , Fabio Mercorio , Mario Mezzanzanica , Navid Nobani

MaxVA: Fast Adaptation of Step Sizes by Maximizing Observed Variance of Gradients

Chen Zhu\and Yu Cheng\and Zhe Gan, Furong Huang, Jingjing Liu , Tom Goldstein

Augmenting Open-Domain Event Detection with Synthetic Data from GPT-2

Amir Pouran Ben Veyseh, Minh Van Nguyen , Bonan Min, Thien Huu Nguyen

Enhancing Summarization with Text Classification via Topic Consistency

Jingzhou Liu, Yiming Yang

Transformers: ``The End of History'' for Natural Language Processing?

Anton Chernyavskiy, Dmitry Ilvovsky, Preslav Nakov

Subspace Clustering Based Analysis of Neural Networks

Uday Singh Saini , Pravallika Devineni , Evangelos E. Papalexakis

Invertible Manifold Learning for Dimension Reduction

Siyuan Li, Haitao Lin, Zelin Zang, Lirong Wu, Jun Xia , Stan Z. Li

Small-Vote Sample Selection for Label-Noise Learning

Youze Xu, Yan Yan, Jing-Hao Xue, Yang Lu, Hanzi Wang

Iterated Matrix Reordering

Gauthier Van Vracem, Siegfried Nijssen

Semi-Supervised Semantic Visualization for Networked Documents

Delvin Ce Zhang, Hady W. Lauw

Self-Supervised Multi-Task Representation Learning for Sequential Medical Images

Nanqing Dong, Michael Kampffmeyer , Irina Voiculescu

Label-Assisted Memory Autoencoder for Unsupervised Out-of-Distribution Detection

Shuyi Zhang, Chao Pan, Liyan Song, Xiaoyu Wu, Zheng Hu, Ke Pei, Peter Tino, Xin Yao

Quantized Gromov-Wasserstein

Samir Chowdhury, David Miller, Tom Needham

Anomaly Detection: How to Artificially Increase your F1-Score with a Biased Evaluation Protocol

Damien Fourure, Muhammad Usama Javaid, Nicolas Posocco, Simon Tihon

Mining Anomalies in Subspaces of High-dimensional Time Series for Financial Transactional Data

Jingzhu He, Chin-Chia Michael Yeh, Yanhong Wu, Liang Wang, Wei Zhang

AIMED-RL: Exploring Adversarial Malware Examples with Reinforcement Learning

Raphael Labaca-Castro, Sebastian Franz, Gabi Dreo Rodosek

Learning Explainable Representations of Malware Behavior

Paul Prasse, Jan Brabec, Jan Kohout, Martin Kopp, Lukas Bajer, Tobias Scheffer

Strategic mitigation against wireless attacks on autonomous platoons

Guoxin Sun , Tansu Alpcan, Benjamin I. P. Rubinstein, Seyit Camtepe

DeFraudNet: An End-to-End Weak Supervision Framework to Detect Fraud in Online Food Delivery

Jose Mathew, Meghana Negi, Rutvik Vijjali , Jairaj Sathyanarayana

Time series forecasting with Gaussian Processes needs priors

Giorgio Corani, Alessio Benavoli, Marco Zaffalon

Task Embedding Temporal Convolution Networks for Transfer Learning Problems in Renewable Power Time Series Forecast

Jens~Schreiber , Stephan~Vogt, Bernhard~Sick

Generating Multi-type Temporal Sequences to Mitigate Class-imbalanced Problem

Lun Jiang, Nima Salehi Sadghiani , Zhuo Tao, Andrew Cohen

Recognizing Skeleton-Based Hand Gestures by a Spatio-Temporal Network

Xin Li , Jun Liao, Li Liu

Smurf-based Anti-Money Laundering in Time-Evolving Transaction Networks

Michele Starnini, Charalampos E. Tsourakakis , Maryam Zamanipour, Andr\'e Panisson , Walter Allasia , Marco Fornasiero , Laura Li Puma , Valeria Ricci , Silvia Ronchiadin , Angela Ugrinoska , Marco Varetto , Dario Moncalvo

Spatio-temporal Multi-graph Networks for Demand Forecasting in Online Marketplaces

Ankit Gandhi, Aakanksha, Sivaramakrishnan Kaveri, Vineet Chaoji

The Limit Order Book Recreation Model (LOBRM): An Extended Analysis

Zijian Shi, John Cartlidge

Taking Over the Stock Market: Adversarial Perturbations Against Algorithmic Traders

Elior Nehemya, Yael Mathov , Asaf Shabtai, Yuval Elovici

Continuous-Action Reinforcement Learning for Portfolio Allocation of a Life Insurance Company

Carlo Abrate, Alessio Angius, Gianmarco De Francisci Morales\and Stefano Cozzini\and Francesca Iadanza, Laura Li Puma\and Simone Pavanelli\and Alan Perott, Stefano Pignataro, Silvia Ronchiadin

XRR: Explainable Risk Ranking for Financial Reports

Ting-Wei Lin , Ruei-Yao Sun, Hsuan-Ling Chang\, Chuan-Ju Wang\, Ming-Feng Tsai

Self-disclosure on Twitter during the COVID-19 Pandemic: A Network Perspective

Prasanna Umar, Chandan Akiti, Anna Squicciarini, Sarah Rajtmajer

COVID Edge-Net: Automated COVID-19 Lung Lesion Edge Detection in Chest CT Images

Kang Wang, Yang Zhao, Yong Dou, Dong Wen, Zikai Gao

Improving ambulance dispatching with machine learning and simulation

Nikki~Theeuwes, Geert-Jan~van~Houtum , Yingqian~Zhang

Countrywide Origin-Destination Matrix Prediction and Its Application for COVID-19

Renhe Jiang , Zhaonan Wang, Zekun Cai\and Chuang Yang, Zipei Fan, Tianqi Xia, Go Matsubara, Hiroto Mizuseki, Xuan Song, Ryosuke Shibasaki

Single Model for Influenza Forecasting of Multiple Countries by Multi-task Learning

Taichi Murayama, Shoko Wakamiya, Eiji Aramaki

Automatic Acoustic Mosquito Tagging with Bayesian Neural Networks

Ivan Kiskin, Adam D. Cobb, Marianne Sinka, Kathy Willis, Stephen J. Roberts

Multitask Recalibrated Aggregation Network for Medical Code Prediction

Wei Sun, Shaoxiong Ji, Erik Cambria, Pekka Marttinen

Open Data Science to fight COVID-19: Winning the 500k XPRIZE Pandemic Response Challenge

Miguel Angel Lozano, Òscar Garibo i Orts, Eloy Piñol, Miguel Rebollo, Kristina Polotskaya, Miguel Angel Garcia-March, J. Alberto Conejero, Francisco Escolano, Nuria Oliver

Getting Your Package to the Right Place: Supervised Machine Learning for Geolocation

George Forman

Machine Learning Guided Optimization for Demand Responsive Transport Systems

Louis~ZIGRAND, Pegah~ALIZADEH, Emiliano~TRAVERSI, Roberto~WOLFLER~CALVO

OBELISC: Oscillator-Based Modelling and Control using Efficient Neural Learning for Intelligent Road Traffic Signal Calculation

Cristian Axenie, Rongye Shi , Daniele Foroni, Alexander Wieder, Mohamad Al Hajj Hassan , Paolo Sottovia, Margherita Grossi , Stefano Bortoli , Götz Brasche

VAMBC: A Variational Approach for Mobility Behavior Clustering

Mingxuan Yue, Yao-Yi Chiang, Cyrus Shahabi

Multi-Agent Deep Reinforcement Learning with Spatio-Temporal Feature Fusion for Traffic Signal Control

Xin Du, Jiahai Wang, Siyuan Chen, Zhiyue Liu

Monte Carlo Search Algorithms for Network Traffic Engineering

Chen~Dang, Cristina~Bazgan, Tristan~Cazenave, Pierre-Henri~Wuillemin

Energy and Emission Prediction for Mixed-Vehicle Transit Fleets Using Multi-Task and Inductive Transfer Learning

Michael Wilbur, Ayan Mukhopadhyay, Sayyed Vazirizade, Philip Pugliese, Aron Laszka, Abhishek Dubey

CQNet: A clustering-based quadruplet network for Decentralized Application classification via encrypted traffic

Yu Wang, Gang Xiong\and Chang Liu, Zhen Li\and Mingxin Cuiand, Gaopeng Gou

SPOT: A framework for selection of prototypes using optimal transport

Karthik S. Gurumoorthy, Pratik Jawanpuria, Bamdev Mishra

PuzzleShuffle: Undesirable Feature Learning for Semantic Shift Detection

Yusuke Kanebako, Kazuki Tsukamoto

Enabling Machine Learning on the Edge using SRAM Conserving Efficient Neural Networks Execution Approach

Bharath Sudharsan, Pankesh Patel, John G. Breslin , Muhammad Intizar Ali

AutoML Meets Time Series Regression Design and Analysis of the AutoSeries Challenge

Zhen Xu , Wei-Wei Tu, Isabelle Guyon

Methods for Automatic Machine-Learning Workflow Analysis

Lorenz Wendlinger, Emanuel Berndl, Michael Granitzer

ConCAD: Contrastive Learning-based Cross Attention for Sleep Apnea Detection

Guanjie Huang, Fenglong Ma

DeepPE: Emulating Parameterization in Numerical Weather Forecast Model through Bidirectional Network

Fengyang~Xu, Wencheng~Shi, Yunfei~Du, Zhiguang~Chen, Yutong~Lu

Effects of Boundary Conditions in Fully Convolutional Networks for Learning Spatio-temporal Dynamics

Antonio Alguacil, Wagner Gonçalves Pinto, Michael Bauerheim, Marc C.~Jacob, Stéphane Moreau

Physics Knowledge Discovery via Neural Differential Equation Embedding

Yexiang Xue\and Md Nasim, Maosen Zhang\and Cuncai Fan\and Xinghang Zhang, Anter El-Azab

A Bayesian Convolutional Neural Network for Robust Galaxy Ellipticity Regression

Claire Theobald, Bastien Arcelin , Frédéric Pennerath, Brieuc Conan-Guez , Miguel Couceiro, Amedeo Napoli

Precise Weather Parameter Predictions for Target Regions via Neural Networks

Yihe Zhang, Xu Yuan, Sytske K. Kimball, Eric Rappin, Li Chen, Paul Darby, Tom Johnsten, Lu Peng, Boisy Pitre, David Bourrie, Nian-Feng Tzeng

Action Set Based Policy Optimization for Safe Power Grid Management

Bo Zhou, Hongsheng Zeng, Yuecheng Liu, Kejiao Li, Fan Wang, Hao Tian

Conditional Neural Relational Inference for Interacting Systems

Joao A. Candido Ramos, Lionel Blondé, Stéphane Armand, Alexandros Kalousis

MMNet: Multi-Granularity Multi-Mode Network for Item-Level Share Rate Prediction

Haomin Yu, Mingfei Liang , Ruobing Xie , Zhenlong Sun , Bo Zhang, Leyu Lin

The Joy of Dressing is an Art: Outfit Generation using Self-Attention Bi-LSTM

Manchit Madan , Ankur Chouragade , Sreekanth Vempati

On Inferring a Meaningful Similarity Metric for Customer Behaviour

Sophie van den Berg, Marwan Hassani

Quantifying Explanations of Neural Networks in E-Commerce Based on LRP

Anna Nguyen, Franz Krause, Daniel Hagenmayer, Michael Färber

Balancing Speed and Accuracy in Neural-Enhanced Phonetic Name Matching

Philip Blair, Carmel Eliav , Fiona~Hasanaj , Kfir Bar

Robust Learning for Text Classification with Multi-source Noise Simulation and Hard Example Mining

Guowei Xu, Wenbiao Ding, Weiping Fu, Zhongqin Wu, Zitao Liu

Topic-to-Essay Generation with Comprehensive Knowledge Enhancement

Zhiyue Liu, Jiahai Wang, Zhenghong Li

Analyzing Research Trends in Inorganic Materials Literature Using NLP

Fusataka Kuniyoshi, Jun Ozawa, Makoto Miwa

An optimized NL2SQL system for enterprise data mart

Kaiwen Dong, Kai Lu, Xin Xia, David Cieslak, Nitesh V. Chawla

Time aspect in making an actionable prediction of a conversation breakdown

Piotr~Janiszewski, Mateusz~Lango, Jerzy~Stefanowski

Feature Enhanced Capsule Networks for Robust Automatic Essay Scoring

Arushi Sharma, Anubha Kabra, Rajiv Kapoor

TagRec: Automated Tagging of Questions with Hierarchical Learning Taxonomy

Venktesh V , Mukesh Mohania, Vikram Goya

Checking Robustness of Representations Learned by Deep Neural Networks

Kamil Szyc , Tomasz Walkowiak , Henryk Maciejewski

CHECKER: Detecting Clickbait Thumbnails with Weak Supervision and Co-teaching

Tianyi Xie, Thai Le , Dongwon Lee

Crowdsourcing Evaluation of Saliency-based XAI Methods

Xiaotian Lu, Arseny Tolmachev\and Tatsuya Yamamoto\and Koh Takeuchi, Seiji Okajima\, Tomoyoshi Takebayashi, Koji Maruhashi\and Hisashi Kashima

Automated Machine Learning for Satellite Data: Integrating Remote Sensing Pre-trained Models into AutoML Systems

Nelly Rosaura Palacios Salinas, Mitra Baratchi, Jan N. van Rijn, Andreas Vollrath

Multi-Task Learning for User Engagement and Adoption in Live Video Streaming Events

Stefanos Antaris, Dimitrios Rafailidis, Romina Arriaza

Explainable Abusive Language Classification Leveraging User and Network Data

Maximilian~Wich, Edoardo~Mosca, Adrian~Gorniak, Johannes~Hingerl, Georg~Groh

Calling to CNN-LSTM for Rumor Detection: A Deep Multi-channel Model for Message Veracity Classification in Microblogs

Abderrazek Azri, C\'ecile Favre, Nouria Harbi , J\'er\^ome Darmont, Camille No\^us\i